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ABSTRACT 
 
 
 
Spacecraft with high performance attitude control systems requirements have 

traditionally relied on imperfect mechanical gyroscopes for primary attitude 

determination.  Gyro bias errors are corrected with a Kalman filter algorithm that uses 

updates from precise attitude sensors like star trackers.  Gyroscopes, however, have a 

tendency to degrade or fail on orbit, becoming a life limiting factor for many satellites.  

When errors become erratic, pointing accuracy may be lost during short star gaps.  

Unpredictable gyro degradations have impacted NASA spacecraft missions such as 

Skylab and Hubble Space Telescope as well as several DoD and ESA satellites.  An 

alternative source of angular rate information is a software implemented real time 

dynamic model.  Inputs to the model from internal sensors and known spacecraft 

parameters enable the tracking of total system angular momentum from which body rates 

can be determined.  With this technique, the Kalman filter algorithm provides error 

corrections to the dynamic model.  The accuracy of internal sensors and input parameters 

determine the effectiveness of this angular rate estimation technique.  This thesis presents 

the background for understanding and implementation of this technique into a 

representative attitude determination system.  The system is incorporated into an attitude 

simulation model developed in SIMULINK to evaluate the effects of dynamic modeling 

errors and sensor inaccuracies.  Results are presented that indicate that real time dynamic 

modeling is an effective method of angular rate determination for maneuvering multi-

body spacecraft attitude control systems. 
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I. INTRODUCTION 
Equation Section 1 
 
 

A. ANGULAR RATE ESTIMATION 

The attitude control systems of today’s high tech satellites require accurate 

angular rate knowledge for attitude propagation and control loop damping in order to 

meet pointing and tracking requirements.  Gyroscopes offer varying degrees of precision 

for direct measurement of angular rates and have been the primary attitude determination 

sensor used by spacecraft for many years.  However, high cost and low reliability has 

lead users and designers to explore other options.  Using dynamic calculations, 

uncertainty based estimation algorithms or a combination of these two methods,  onboard 

processors can estimate spacecraft angular rates without measuring them directly.  

Angular rate estimation techniques can be a viable alternative for back-up or even 

primary attitude determination system in many control schemes. 

 
B. OPTIMAL ESTIMATION 

“An optimal estimator is a computational algorithm that processes measurements 

to deduce a minimum error estimate, in accordance with stated optimality criterion, of the 

state of a system by utilizing:  knowledge of system measurement dynamics, assumed 

statistics of system noises and measurement errors, and initial condition information.” 

[Ref. 1]  Estimation techniques provide filtering, smoothing and prediction of state 

variables in an imperfect model based on imperfect measurement update data.  The most 

common optimal estimator used in stochastic systems is the Kalman filter.  The dynamic 

model error and measurement error are assumed as zero mean Guassian white noise 

processes with known covariance.  Estimators are commonly used even in systems where 

all state variables required by controller can be measured. 
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Figure 1. Basic Kalman Filter Block Diagram 
 

Maybeck identifies three basic reasons why deterministic methods are insufficient 

for describing real systems.  First, no mathematical model is perfect.  There are always 

effects that are necessarily neglected to make the model practical and even modeled 

effects are only approximations to what is physically occurring.   Second, dynamic 

systems are driven not only by control inputs but also by disturbances which we can 

neither control nor model deterministically.  Lastly sensors do not provide perfect and 

complete data. [Ref. 2] 

An important advantage of using an optimal estimator such as the Kalman filter is 

that the attitude determination output does not affect the controller design.  Therefore the 

development of an optimal controller can be accomplished independently.  An attitude 

control algorithm optimized for ideal state inputs will remain optimized with state 

estimates provided by an optimal estimator. 

 
C. ANGULAR RATE ESTIMATION FROM VECTOR MEASUREMENTS 

The concept of using attitude sensor data to produce an estimate of spacecraft 

angular rate without gyroscopes is not new.  Gyroless attitude and angular rate estimation 

has been a prime concern for small inexpensive spacecraft that do not carry gyroscopes 

but still require rate information for attitude propagation and control.  Estimation 

techniques also provide options for complex spacecraft that require back-up control 

modes in the event of gyro failures.  The problem of angular rate estimation can be 
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treated separately from attitude determination.  Several reliable algorithms have been 

developed that produce angular rate using on-board processors. 

It is possible to extract angular rate directly from time derivatives of measured 

vectors resolved in the body coordinate frame and known in an inertial frame from a 

model or almanac data.  This technique, however, requires at least two non-parallel 

vector measurements.  It also exhibits time lag and produces very noisy data since the 

algorithms depend on derivatives of already noisy measurements.  A better estimate of 

angular rate can be achieved by treating the problem as stochastic.  For this method an 

estimating filter is applied that uses dynamic equations of motion to take advantage of 

past data in a recursive sense.  This method has the additional advantage of being able to 

update rate estimates at time steps when only one vector measurement is available.  The 

vector derivative is treated as a noisy measurement update to a Kalman rate estimator. 

A Kalman filter requires a linear state-space dynamic model but the dynamics of a 

spacecraft in the rotating body coordinate frame are coupled and nonlinear.  Attitude 

determination schemes deal with this problem in different ways.  Several methods have 

been proposed for interlacing two or three linear Kalman filters together to capture the 

nonlinear dynamics [Ref. 3].  It is shown that the coupled equations of motion can be 

written as a linear combination of the spacecraft angular rate and two other newly defined 

vectors whose components are nonlinear combinations of the angular rate vector 

elements.  The differential equations for each of these new vectors can be written as 

linear combinations of the other and the angular rate.  Adding white noise vectors to these 

new equations of motion produces a set of three stochastic linear models that can be used 

in separate Kalman filters.  The filters are interlaced with their estimated outputs treated 

as deterministic inputs to each other. 

An effective method of dealing with non-linear dynamics is presented for use by 

the Pseudo-linear Kalman filter (PSELIKA) and the state-dependent algebraic Riccati 

equation filter (SDARE) [Ref. 4].  For these unique rate estimation techniques the 

equation of motion is transformed to express the nonlinear terms in angular rate as a 

product of a matrix whose elements depend on the components of the angular rate vector 

and the angular rate vector itself.  The pseudolinear Kalman filter or PSELIKA is 
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implemented as an ordinary discrete Kalman filter with a time dependent state transition 

matrix whose angular rate dependent elements are formed from the current estimate of 

angular rate.  The SDARE or state-dependent algebraic Riccati equation filter is also 

implemented as a discrete Kalman filter derived from the same representation of the 

dynamic equation.  The Kalman gain used in this filter is computed from the solution of 

an algebraic Riccati equation involving the angular rate dependent matrix.  This 

eliminates the need to propagate and update the filter state covariance which is normally 

used in the gain calculation. 

The pseudolinear filter concept can be extended to use quaternion measurements.  

In the attitude determination system  on board the Rossi X-Ray Timing Explorer (RXTE) 

satellite advanced star tracker software directly provides information in the form of 

quaternions [Ref. 5].  The same propagation algorithm is used with measurement updates 

in the form of quaternions.  Since the device yielding the attitude measurement also 

conducts a star search and identification process a time delay is introduced.  Two 

algorithms are presented for overcoming this delay problem. 

 
D. FULL ORDER ESTIMATORS 

It is not necessary to treat the problem of angular rate estimation separately from 

attitude determination.  In fact, attitude sensor data also requires filtering to smooth out 

measurement noise and produce a clean attitude estimates.  High precision control laws 

generally require both attitude and angular rate information.  These components make up 

the full system state vector. 

Full order estimators produce optimal state estimates in the case where imperfect 

measurement data related to all of the modeled states is continuously available.  

Spacecraft with a triad of rate gyroscopes and attitude sensors have the required state 

measurements but the bandwidth of the attitude sensors is normally too low for the 

control system.  Additionally, there may be periodic gaps in sensor coverage and certain 

sensors do not provide reliable attitude information in all three orthogonal dimensions.  

Therefore standard full order state estimators are generally not used. 
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In most practical implementations of gyro-based attitude control systems rate 

information is used in the propagation stage of an attitude estimator based on kinematic 

equations.  The estimator utilizes discrete vector observations, resolved in both body-

fixed coordinates and a reference frame, to estimate spacecraft attitude and gyro drift 

rates. 

In an ideal attitude determination system where perfect knowledge of the 

spacecraft angular rates is available, the accuracy of the kinematic model for determining 

attitude is limited only by the processor time step and the initial attitude state.  Attitude 

sensors can be used to periodically reinitialize the kinematic model but the data they 

provide is discontinuous and corrupted by environmental effects and sensor design 

imperfections. 

In real attitude determination systems, the source of angular rate information may 

be noisy as well as biased, as is the case with spacecraft gyroscopes.  This results in 

additional errors in the spacecraft attitude determination system.  For control systems 

where attitude and angular rate information is critical, optimal estimation techniques are 

employed to combat the effects of model and sensor inaccuracies.  As gyros degrade the 

estimator can be made more robust to plant error at the expense of attitude determination 

accuracy.  At some point the gyro outputs may become too erratic to meet control system 

requirements. 

 
E. REDUCED ORDER ESTIMATORS 

Obtaining satellite angular rate estimates without the use of rate gyroscopes or 

other deterministic rate data can be accomplished with a reduced order estimator.  This 

class of filters produces estimates of all modeled state variables when only a subset is 

directly related to the measurement data.  In this case, attitude sensor information is 

available but no direct rate measurement is performed.  Since gyro data is not available 

no update to the spacecraft rate is available between attitude measurements. 

The reduced estimator Kalman filter is formulated from the state space dynamic 

equations of motion linearized about the current estimate of state.  Again, for spacecraft 

attitude control the state vector includes both the attitude and angular rate.  The 
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deterministic inputs to the model are the known externally applied moments usually 

consisting only of control torques.  Unmodeled disturbances and other dynamic effects 

must be accounted for by a robust plant noise model.  The estimates of attitude and 

angular rate are propagated forward by the dynamic model with discrete corrections from 

the attitude sensors. 

The performance of the reduced Kalman estimator can be improved by including 

higher order dynamic effects in the system plant model and including disturbance torques 

as deterministic inputs.  However this costs extra processing power, requires additional 

sensors and cannot account for all of the unknowns.  Additional dynamic complexities 

are introduced in multi-body satellites that have time varying moments of inertia, 

changing centers of mass and flexibility modes.  Determining the magnitude and effects 

of disturbances and modeling simplifications for a particular spacecraft is an important 

design consideration that often requires rough calculations, simulation and engineering 

judgment.  In general, since disturbances are of low amplitude and low frequency 

compared to control torques, their effects can be accounted for as plant error by the filter. 

One approach that avoids the use of the typically uncertain dynamic model 

altogether is to treat the spacecraft as a noncooperative target whose rotation must be 

tracked by a stochastic estimator  [Ref. 6].  This concept is borrowed from tracking 

theory where it has been widely used to estimate target motion.  This algorithm adds 

angular acceleration to the state vector and substitutes attitude states with the integrated 

rate parameters to formulate a nine state linear Kalman filter.  Since this set of variables 

serves as an approximate third-order attitude parameterization, the size must be 

controlled by sampling interval.  Instead of using dynamics, time propagation of the 

estimated state variables is performed in the proposed filter by modeling the spacecraft 

angular acceleration as an exponentially autocorrelated stochastic process and using a 

polynomial kinematic model. 

In reduced order estimators, time steps for state propagation must be kept small to 

minimize the effects of dynamic simplifications and linearization.  The primary limitation 

of the reduced estimator becomes evident during prolonged intervals between attitude 

sensor measurement updates.  Gaps in attitude sensor coverage must be kept short enough 
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to ensure that estimator errors do not grow beyond required precision of the attitude 

control system. 

 
F. STAR SENSOR BASED ESTIMATORS 

Bandwidth and accuracy limitations of attitude sensors have precluded the use of 

reduced order estimators for spacecraft missions with high performance pointing and 

tracking requirements.  Aside from star trackers, most sensors do not provide accurate 

and stable enough attitude data for high performance tracking requirements.  

Additionally, these sensors provide discrete measurements unlike gyroscopes which 

produce nearly continuous data and can be sampled at extremely high frequency limited 

only by processing capabilities.  However, recent advancements in sensor technology 

suggest that star trackers can provide updates accurately and frequently enough to be 

considered for use as primary attitude sensors for a wide range of spacecraft missions.  

Key technological improvements include a wide field of view, high sensitivity, low noise 

equivalent angles and high bandwidth iteration rate. 

It has been proposed that advanced high-bandwidth star sensors can be used as the 

primary sensors for on-orbit attitude rate determination in place of angular rate 

gyroscopes [Ref. 7].  A Kalman filter algorithm, using updates from star tracker 

measurements, is presented that tracks errors in the attitude and angular rate for a 

kinematic based state space model.  The spacecraft angular rate used for attitude 

propagation is separated into a nominal component and a component due to control and 

disturbance moments.  The algorithm assumes that the bandwidths of the control system 

and disturbance effects are at least an order of magnitude smaller than the measurement 

bandwidth.  This allows the rate of change in spacecraft angular rate due to unmodeled 

dynamic effects to be modeled as a first-order Gauss-Markov process.  Nonlinear 

kinematics are used in the attitude propagation phase which is performed external to the 

estimator.  The errors in the this model are then tracked using an ordinary linear discrete 

Kalman filter. 
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G. ANALYTICAL RATE DETERMINATION 

Another method of obtaining estimates of spacecraft angular rates is through 

direct calculation from the dynamic equations of motion for the system.  This rate 

calculation is performed in real time based on known, derived and sensed internal 

parameters of the spacecraft.  The software implemented dynamic model can be adjusted 

to include varying levels of complexity for multi-body spacecraft that operate in different 

configurations.  The Aerospace Corporation has patented one methodology for this 

process called the “Pseudo Gyro” [Ref. 8]. 

Information from internal sensors that detect relative orientations and angular 

rates of momentum exchange devices and appendages are used to continually update the 

parameters used in the dynamic calculations.  These parameters determine component 

contributions to the system angular momentum and inertia dyadic.  Control torques and 

modeled disturbances are integrated to capture external dynamic effects.  Using the total 

system angular momentum and inertia dyadic and the relative momentum of internal 

components and appendages from the dynamic model the spacecraft angular rate can be 

calculated.  If the appendage masses are small or their relative motions are slow the 

spacecraft inertia matrix is slow to change.  The moment of inertia calculations can be 

performed at a lower frequency to save processing time.  Cross product effects due to the 

rotating coordinate frame must also be accounted for in the dynamic model since all 

measurements are taken in the body frame. 

The accuracy of the calculated rate is dependent on the quality of the dynamic 

model and the sensor information available.  Error sources include imperfect knowledge 

of component or appendage inertia matricies and mass centers as well as relative angular 

position and rate data from the internal sensors.  Often relative rates are not measured 

directly but derived from position encoders which adds extra noise to the momentum 

along the axis of rotation of the appendage.  Errors are also introduced through external 

disturbance effects since they cannot be perfectly modeled.  All of these dynamic 

influences effect the model precision in varying degrees.  Additionally, due to the 

finite/discrete processing capabilities of the computer performing the calculations there 

will be a slight drift over time from the true state even in the case of perfect sensors and 
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input data.  This drift is obviously minimized by increasing the frequency of the discrete 

model calculations. 

 
H. ATTITUDE ESTIMATION FROM CALCULATED RATE 

The rate estimate produced by the dynamic calculations can be fed into a Kalman 

filter in place measurement data from a gyroscope.  The filter receives attitude update 

information from attitude sensors to produce smoothed attitude reference and angular rate 

error estimates to enhance satellite attitude determination accuracy.  The plant error 

introduced into the filter is a combination of all the internal sensor and modeling errors 

that are used as inputs to the dynamic model.  All known sensor biases must be 

incorporated into the plant model since the Kalman filter assumes errors to be zero mean 

Gaussian.  Depending on different modes of operation, different plant noise models may 

be required for acceptable filter performance.  Normally, filters that receive 

measurements from gyroscopes are designed to track gyro biases which remain relatively 

constant in the body frame.  The rate error from the dynamic estimate, however, exhibits 

different characteristics.  Since the dynamic model is external to the Kalman filter higher 

order effects can be more easily incorporated into the dynamics but onboard processing 

capability may still limit the complexity. 

 
I. PURPOSE 

The objective of this study is to develop and evaluate a practical attitude and rate 

estimation scheme for a multi-body spacecraft attitude control system that incorporates 

both real time angular rate calculation from the system dynamic model (dynamic gyro) 

and a Kalman filter estimator with attitude sensor updates provided by star trackers.  It is 

hypothesized that acceptable attitude control performance can be realized by 

maneuvering multi-body spacecraft without hardware gyroscope data using this 

methodology. 

The evaluation of this approach is performed through simulation using a model 

developed in SIMULINK.  A MATLAB script file is used to set up the necessary 

initialization parameters and system specifications.  Simulation results are presented 

graphically in MATLAB plots.  The performance of the developed gyroless attitude 
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determination system is compared to a conventional gyro-based system that uses the 

same Kalman filter estimation algorithm and attitude updates.  Results are also presented 

that analyze the affects of several major error sources on the performance of this dynamic 

gyro based attitude determination system. 
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II. SIMULATION OVERVIEW 
Equation Section (Next) 
 
 

The evaluation and analysis of attitude determination scheme proposed in this 

thesis is done through modeling and simulation.  The context for the development of the 

attitude determination system is a multi-body attitude control system for a maneuvering 

spacecraft.  An attitude simulation model for the spacecraft that includes vehicle 

dynamics, determination and control subsystems as well as modeled error sources is 

developed using MATLAB/SIMULINK.  An overview of the simulation and top level 

subsystems is presented in this chapter.  Subsequent chapters provide the descriptions of 

the subsystems and derivation of the equations on which the model is based.  In the 

following chapters, actual SIMULINK diagrams are presented that show the 

implementation of associated subsystems. 

 
A. CONCEPTUAL ATTITUDE SIMULATION MODEL 

A conceptual representation of the simulation developed for this study is 

illustrated in Figure 2. 
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Figure 2. Conceptual Attitude Simulation Block Diagram 
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The model is divided into subsystems represented in color shaded blocks.  This 

breakdown reduces the complexity of the overall model into manageable segments to aid 

in design and analysis.  Arrows indicate the dynamic coupling and flow of data between 

subsystem blocks.  The top level SIMULINK diagram that implements the concept is 

shown in Figure 3. 

 

Figure 3. Top Level SIMULINK Attitude Simulation Model 
 
B. SPACECRAFT MOTION 

The actual spacecraft attitude motion is simulated in the rotational dynamics and 

kinematics subsystems with inputs and outputs represented by solid black lines.  Relative 

motion of the secondary body or appendage is treated in a separate subsystem with 

dynamic effects coupled into the overall spacecraft motion through momentum exchange 

directly related to the drive motor rate.  Dynamic effects of reaction wheel control are 

also realized through momentum exchange.  Magnetic control effects are input to the 
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spacecraft dynamics as external torques along with modeled and approximated 

disturbance torques.  The relative appendage motion also causes changes in the 

spacecraft’s moments of inertia used in the dynamic model.  The kinematics subsystem 

propagates the actual spacecraft attitude quaternions referenced to an inertially fixed 

coordinate frame. 

 
C. CONTROL SYSTEM 

Primary spacecraft attitude control is conducted through momentum exchange 

with reaction wheels.  The reaction wheel commands are based on control laws and up-

linked feed forward torque command profile.  The control laws use errors between the 

measured and commanded (desired) spacecraft angular rates and attitude quaternions.  

The relative momentum generated in the wheels is subtracted from the spacecraft 

momentum in the dynamics subsystem.  Magnetic torques are generated based on 

reaction wheel momentum build up when the system is set for momentum dumping.  

These torques are directly applied in the spacecraft dynamics block. 

 
D. ATTITUDE DETERMINATION SYSTEM 

The attitude determination subsystem is of primary concern in this thesis.  It 

incorporates the dynamic modeling concept and an error state Kalman filter in order to 

correct for attitude propagation errors.  The option of using modeled mechanical gyros to 

determine spacecraft angular rate is also maintained in order to allow comparison 

simulations to be conducted.  The concept of using a dynamic model for analytical rate 

determination will be referred to in the sequel as the dynamic gyro. 

The attitude determination computer simulation uses a trigger to control the 

bandwidth of discrete calculations.  The basic data flow within the attitude determination 

computer is shown in the large rectangular subsystem block in Figure 2.  The equivalent 

SIMULINK diagram that implements this subsystem is shown in Figure 4. 
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Figure 4. SIMULINK Attitude Determination Subsystem 
 

Random noise and drift rates are added to the actual angular velocity vector for 

the simulated rate input of the mechanical gyro option.  Bias corrections from the Kalman 

estimator are applied to the angular rate before it is used in the attitude propagator.  When 

the dynamic gyro option is simulated the angular rate is analytically determined from 

measured and known spacecraft parameters fed into a discrete dynamic model.  Artificial 

errors and noise are applied to measured and derived parameters though internal sensor 

models.  Momentum corrections to the dynamic gyro are derived from Kalman filter 

updates.  The calculated rate is then supplied to the attitude propagator. 

The error state Kalman filter algorithm depends on updates generated by star 

tracker measurements.  A star tracker model is used to produce artificial noise corrupted 

horizontal and vertical measurements related to the star tracker orientation.  The Kalman 

filter tracks rate errors for bias correction of gyro measurements or momentum 

corrections for the dynamic gyro.  It also produces attitude corrections that are applied to 

the attitude propagator output. 
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The attitude Propagator uses discrete kinematics to convert angular rate to 

quaternion attitude.  These estimated parameter are then used by the attitude control 

algorithm to complete the feedback loop. 
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III. DYNAMICS AND CONTROL 
Equation Section (Next) 
 
 

As three-axis stabilized spacecraft become more technologically advanced, their 

operations require more slewing maneuvers and their dynamic complexities increase.  

This often leads to multiple rigid or flexible components that have independent pointing 

and tracking requirements.  Complex satellites often consist of a primary payload that 

demands strict pointing control while directional telemetry and command antennas or 

secondary payloads are controlled independently for other functions such as tracking a 

ground station throughout its maneuvers. 

Here we consider the dynamics of a spacecraft that consists of a primary body 

with momentum exchange control devices and a coupled rigid secondary body or 

appendage.  The secondary body rotates with one degree of freedom relative to the 

spacecraft about an axis through the centers of mass of both bodies.  Under these 

conditions, the position of the spacecraft center of mass remains stationary during 

appendage relative motion. 

 
A. BIFOCAL RELAY MIRROR SATELLITE DYNAMICS 

The example spacecraft for which the equations of motion are derived is the 

Bifocal Relay Mirror satellite shown in Figure 5.  This spacecraft is designed to receive 

laser energy from a ground station through a receive telescope and to redirect it through 

an optically coupled transmit telescope to a different point on the ground.  The primary 

body is the transmit telescope and the rigidly attached spacecraft bus while the smaller 

receive telescope is treated as the secondary body or appendage.  Weight and balance 

design ensures that the centers of mass of the two bodies lie close to the coupled axis of 

rotation so that the system center of mass is nearly constant during relative motion.  

Pointing control of the spacecraft is accomplished with reaction wheels while a drive 

motor is used to control the relative angle between the transmit and receive telescopes. 
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Figure 5. Bifocal Relay Mirror Satellite 
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There are three coordinate systems defined for the development of the dynamic 

equations.  These coordinate frames are depicted in the system diagram shown in figure 

x.  The xyz coordinate system is fixed to the primary body with the origin at its center of 

mass.  The x-axis is oriented parallel to the axis of rotation between the primary and 

secondary bodies and the z axis is parallel to the optical axis of the telescope.  The y axis 

is defined such that the xyz coordinate system is a right-handed mutually orthogonal 

frame.  The x’y’z’ coordinate system is similarly oriented to the secondary body with its 

origin at the center of mass.  The x and x’ axes remain parallel during appendage motion 

while the angular displacements of the y’ and z’ axes from the y and z axes respectively 

are defined by the relative rotation angle á.  The equations of motion are derived for the 

spacecraft body coordinate system, XYZ, which is parallel to xyz frame.  Its origin is at 

the total spacecraft center of mass.  Unit vectors along the X, Y, and Z spacecraft body 

axes are given by i
r

, j
r

 and k
r

 respectively. 

 
1. Rigid Body Equations of Motion 

The angular equations of motion are derived from the application of Newton’s 

second law to rotational dynamics.  In the general case the equation of motion defined in 

an inertial frame for a rigid body about an arbitrary point P is given by 

( )P P c c

m

M H ñ r dm= + ×∫
v v v v& & &        (3.1) 

where PM
v

 is the net external torque applied to the body about P, PH
v

 is the angular 

momentum of the body about P, cr
v

 is the position of the center of mass relative to P, cñ
v

 is 

the vector from the center of mass to the position of dm in the body, and dm is an 

incremental unit of mass within the body 

If point P is coincident with the body center of mass, then cñ 0=
vv

 and the equation 

simplifies to  

M H=
v v&          (3.2)  

Equation (3.2) applies in inertial reference frames.  To extend it to body coordinates 

where it can be employed, we need to understand the concept of vector derivatives in a 
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rotating coordinate frame.  If the body frame rotates relative to an inertial reference frame 

with angular velocity ù
v

 then the derivative of any vector A
v

 in inertial coordinates can 

be related to the derivative in the rotating body coordinates by 

BI B
A A ù A= + ×
v v vv& &         (3.3) 

Applying this relation to the angular momentum, the equation of motion for a rigid body 

in rotating body coordinates becomes 

M H ù H= + ×
v v vv&         (3.4) 

 
2. Multi-Body Equations of Motion 

For the two body Bifocal Relay Mirror system with reaction wheels shown in 

figure 1, the total system angular momentum in body XYZ coordinates can be written 

S- rel wH H H H= + +
v v v v

        (3.5) 

where H
v

 is the total system angular momentum of the spacecraft, S-H
v

 is the angular 

momentum of the system due to the rotation of the body coordinate frame, neglecting the 

contribution due to relative motion of the receive telescope and reaction wheels, relH
v

 is 

the angular momentum due to the relative motion of the secondary body, and wH
v

 is the 

angular momentum due to the relative motion of the reaction wheels 

Since the Bifocal Relay Mirror spacecraft is approximated as a system of rigid 

bodies, we can substitute the total system angular momentum, H
v

, into Equation (3.4) to 

get the multi-body spacecraft equation of motion 

( )S- rel w S- rel wM H H H ù H H H= + + + × + +
v v v v v v vv& & &      (3.6) 

where M
v

 is the net external torque applied to the spacecraft about its center of mass 

including all control and disturbance torques. 
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3. Moments of Inertia 

To determine these angular momentums we need to consider the moments of 

inertia of the spacecraft and it components.  We define TI  to be the inertia matrix for the 

primary body (transmit telescope and bus) about its center of mass in the xyz coordinate 

frame. 

T T T
xx xy xz

T T T
T xy yy yz

T T T
xz zy zz

I -I -I

I -I I -I

-I -I I

 
 

=  
  

       (3.7) 

The vector from the center of mass of the primary body to the spacecraft center of mass is 

given by 

T T T Tr x y zi j k= + +         (3.8) 

The moment of inertia matrix for the receive telescope, IR, about its center of mass given 

in the x’y’z’ coordinate frame is given by 

R R R
x'x' x'y' x'z'

R R R
R x'y' y'y' y'z'

R R R
x'z' z'y' z'z'

I -I -I

I -I I -I

-I -I I

 
 =  
  

       (3.9) 

The vector from the center of mass of the receive telescope to the spacecraft center of 

mass is given by 

R R R Rr x y zi j k= + +         (3.10) 

To align the receive telescope inertia matrix with the spacecraft body coordinate 

frame a transformation matrix is applied.  This time varying matrix is the direction cosine 

matrix that defines a single rotation.  The axis of rotation is parallel to the body X axis 

and is of magnitude á.  The transformation matrix is given by 

X

1 0 0

T 0 cos(á) sin(á)

0 sin(á) cos(á)

 
 =  
 − 

       (3.11) 
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The SIMULINK subsystem used to generate this x-axis rotation matrix given an input 

angle is shown in Figure 6. 

 

Figure 6. SIMULINK Subsystem Diagram:  X-Axis Rotation Matrix 
 

To obtain the total system inertia matrix about the spacecraft center of mass in the 

body coordinate frame XYZ the parallel axis theorem is applied to the inertia matricies of 

each body.  Additionally the rotation matrix is applied to the receive telescope inertia 

matrix to align it with the body coordinates.  If mT and mR are the masses of the transmit 

telescope and receive telescope respectively the total system inertia matrix is given by 

2 2
T T T T T T

2 2 T
T T T T T T T T X R X

2 2
T T T T T T

2 2
R R R R R R

2 2
R R R R R R R

2 2
R R R R R R

y z x y x z

I I m x y z x y z T I T

x z y z x y

y z x y x z

m x y z x y z

x z y z x y

 + − −
 = + − + − + 
 − − + 
 + − −
 + − + − 
 − − + 

L

   (3.12) 

The calculation of the spacecraft system inertia matrix is implemented in the SIMULINK 

subsystem shown in Figure 7. 
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Figure 7. SIMULINK Subsystem Diagram:  Spacecraft Moment of Inertia Matrix 
 

a. Rate of Change of Spacecraft Inertia Matrix 

All components of the system moment of inertia matrix are constant except 

T
X R XT I T  which varies with the relative rotation angle á .  Therefore the rate of change of 

the system inertia matrix is given by 

T T
X R X X R XI T I T T I T= +& & &         (3.13) 

where X

0 0 0

T 0 sin(á)á cos(á)á

0 -cos(á)á sin(á)á

 
 = − 
 − 

& & &

& &

 and T
X

0 0 0

T 0 sin(á)á -cos(á)á

0 cos(á)á sin(á)á

 
 = − 
 − 

& & &

& &

.  It can be 

shown that I&  as a function of á  and á&  is given by 

R R
x'y' x'z'
R R
x'z' x'y'

R R
x'y' x'z'

R R 2 R 2 R
y'y' y'z' y'z' z'z'

R 2 R 2 R
y'y' y'y' y'z'

0

Iá I sin(á) I cos(á)

I sin(á) I cos(á)

I sin(á) I cos(á)

2I sin(á)cos(á) 2I cos (á) 2I sin (á) 2I sin(á)cos(á)

I sin ( á) I cos (á) 4I sin(á)cos
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= +
 −
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− +

& & L
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(á) I cos (á) I sin (á)

I sin(á) I cos(á)
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+ −

−
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+ − −






L  

           (3.14) 

The SIMULINK subsystem diagram that calculates the rate of change of the spacecraft 

inertia matrix based on appendage relative angular orientation and rate is shown in Figure 

8. 
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Figure 8. SIMULINK Subsystem Diagram:  Rate of Change of Spacecraft Inertia 
Matrix 

 
4. Angular Velocity 

The spacecraft angular velocity is defined by the angular velocity of the primary 

body with respect to the inertial reference frame.  This angular velocity vector is given by 

x

T y

z

ù

ù ù

ù

 
 =  
  

v
         (3.15) 

The relative angular velocity between the primary and secondary bodies due to the 

rotation about the body x axis is given by 

rel

á

ù 0

0

 
 =  
  

&
v          (3.16) 



25 

The angular velocity of the receive telescope is equal to the spacecraft angular velocity 

plus the relative velocity 

x

R T rel y

z

ù á

ù ù ù ù

ù

+ 
 = + =  
  

&
v v v        (3.17) 

 
5. Angular Momentum 

The components of the total spacecraft angular momentums given in Equation 

(3.5) can now be defined.  The system angular momentum neglecting the momentum due 

to the relative motion of the receive telescope and the reaction wheels is given by 

S-H I=
v v

         (3.18) 

The angular momentum of the receive telescope relative to the spacecraft is given by 

rel R relH I ù=
v v

         (3.19) 

Substituting Equations (3.18) and (3.19) into Equation (3.5) we get the total system 

angular momentum 

R rel wH I ù I ù H= + +
v vv v

        (3.20) 

Substituting this relation into Equation (3.6), the spacecraft equation of motion can be 

rewritten as 

( )R rel w R rel wM I ù Iù I ù H ù Iù I ù H= + + + + × + +
v v vv v v v v v&& & &     (3.21) 

 
6. Solving for Spacecraft Angular Rate 

To solve for the spacecraft angular rate, ù
v

, we can isolate ù
v&  in Equation (3.21) 

and perform the integration using a computer solver.  This however places an 

unnecessary burden on the processor to continuously calculate the time derivative of the 

spacecraft moment of inertia.  A simpler method is accomplished by first solving for S-H
v

.  

The spacecraft equation of motion is rewritten as 
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S- R rel wM H I ù H ù H= + + + ×
v v v vv v& &&       (3.22)

which can be solved for S-H
v& . 

S- R rel wH M I ù H H ù= − − + ×
v v v vv v& &&       (3.23)

After the integration,  

( ) ( )S- R rel w R rel w

t t

H M I ù H H ù dt M H ù dt I ù H= − − + × = + × − −∫ ∫
v v v v v v vv v v v&&   (3.24)

the angular rate, ù
v

, is obtained from 

-1
S-ù I H=

vv
         (3.25)

Figure 9 shows the SIMULINK diagram for implements the spacecraft dynamics for the 

Bifocal Relay Mirror attitude simulation.  The integration is performed using the 

Dormand-Prince ode5 solver. 

 

Figure 9. SIMULINK Subsystem Diagram:  Spacecraft Dynamics 
 

B. COMMAND 

Maneuvering spacecraft often require feed forward command to maintain precise 

tracking requirements throughout their maneuvers.  The Bifocal Relay Mirror satellite 

must maintain tightly controlled ground tracking by both the transmit and receive 
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telescopes in order to perform its mission.  For this system the envisioned feed forward 

command will include control torques necessary to maintain a dynamic attitude profile, 

which includes the relative motion between the primary and secondary bodies, calculated 

in the absence of disturbances.  The spacecraft control laws will be used to correct for 

errors in the calculated command profile and external disturbances based on errors in 

spacecraft attitude and angular rate from the attitude determination system. 

The estimated spacecraft rotational profile is predetermined prior to the execution 

of a maneuver and tracking operation.  The profile includes the spacecraft body attitude, 

angular rate and angular acceleration as well as the relative angle, rate and acceleration 

between the transmit and receive telescopes.  The net external torque required to maintain 

this profile in the absence of disturbances is fed forward to the control devices.  This 

torque can be calculated from the spacecraft equation of motion, Equation(3.21), 

neglecting the reaction wheel control devices 

( )c c c R relc c c R relcM I ù Iù I ù ù Iù I ù= + + + × +
v v v v v v v& & &      (3.26)

In this equation the subscript c is used to represent feed forward command.  The 

equivalent SIMULINK subsystem used in the simulation to generate the feed forward 

command torque is shown in Figure 10. 

 

Figure 10. SIMULINK Subsystem Diagram:  Feed Forward Torque Command 
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C. CONTROL 

Primary attitude control of the Bifocal Relay Mirror satellite is accomplished with 

reaction wheels.  Four reaction wheels are arranged in a pyramid constellation to achieve 

redundancy in the event of a single wheel failure.  Under normal operations three wheels 

are operating while the forth is off line.  Control torques commands are calculated in 

body coordinates and then distributed to the three operating wheels. 

Torque commands are generated from the feed forward command profile plus the 

attitude control laws with compensation for the gyroscopic torques generated from the 

spinning reaction wheels.  The simple partial plus derivative type controller is chosen for 

this satellite.  The control laws are based on attitude quaternion and angular rate error as 

calculated from the outputs of the attitude determination system where the quaternion 

error is calculated by Equation (4.16) [Ref. 9].  The three body axis wheel control laws 

are given by 

w1 q1 E1ù 1 E1

w2 q2 E2ù 2 E2

w3 q3 E3ù 3 E3

H K q K ù

H K q K ù

H K q K ù

= +

= +

= +

&

&

&

       (3.27) 

More exotic control schemes exist but the optimal state estimates provided by the 

attitude determination system are simply employed by these control laws. 

The control law gains are chosen to minimize steady state errors attitude errors 

while ensuring that oscillations induced by the attitude control system do not interfere 

with on-orbit structural modes and payload components.  To determine the optimal 

control gains, attitude control simulations are conducted with a representative 

maneuvering profiles and external disturbances.  The state inputs used by the controller 

during gain adjustment simulations are perfect attitude and rate knowledge.  As explained 

in Chapter I, the optimal controller can be determined independently from the attitude 

determination system since its outputs are based on optimal state estimation. 

The reaction wheel control subsystem used in the SIMULINK attitude simulation 

model is shown in Figure 11.  Saturation and rate limiting is applied to simulate nonlinear 

effects in real reaction wheel control systems.  The net control torque is determined and 
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then distributed to the individual reaction wheels based on their orientation within the 

constellation. 

 
Figure 11. SIMULINK Subsystem Diagram:  Reaction Wheel Control 

 
D. DISTURBANCE TORQUES 

Representative disturbance torques are simulated in order to observe spacecraft 

attitude performance in a realistic space environment. 

 
1. Gravity Gradient Torque 

At low altitudes the torque induced by gravity gradient on spacecraft without 

matched body moments of inertia can be significant.  A model for the gravity gradient 

torque on a spacecraft in orbit is given by 

G 0 03
0

3ì
M R IR

R
= ×

r rv
        (3.28)

where R0 the distance from the spacecraft center of mass to the Earth’s center, 0R
r

 is the 

unit vector in that direction given in body coordinates, and I is the total spacecraft 
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moment of inertia matrix.  If the direction cosine matrix from the orbit to body frame, 

B OC , is known, 0R
r

 is given by 

13

0 23

33

0

R 0

1

B O

c

C c

c

   
   = =   
      

r
        (3.29)

In the attitude simulation model, the orbital reference frame direction cosine matrix 

components are propagated using the spacecraft angular rate relative to the rotating orbit 

frame from an initial orientation.  The relative orbital rate is determined from the inertial 

rate minus the rate of rotation of the orbit frame.  The SIMULINK subsystem for 

propagating the orbital reference is shown in Figure 12. 

 

Figure 12. SIMULINK Subsystem Diagram:  Orbital Reference Propagation 

Using the orbital reference coordinates the gravity gradient torque can then be 

written 

13 13

G 23 233
0

33 33

3ì
M I

R

c c

c c

c c

   
   = ×   
      

v
       (3.30)

Figure 13 shows the SIMULINK subsystem that models the gravity gradient torque based 

on the orbital reference frame direction cosine matrix. 

 

Figure 13. SIMULINK Subsystem Diagram:  Gravity Gradient Torque Model 
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2. Other External Disturbance Torques 

Other disturbance torques include those due to unbalanced solar pressure, 

magnetic interactions, and aerodynamic drag effects.  These disturbances are not as easily 

modeled as gravity gradient but their characteristics and magnitudes are important 

considerations in the design of spacecraft attitude control systems.  In the simulation 

model, secular and slowly varying periodic moments are introduced in each body axis to 

account for these unknown disturbances.  Worst case magnitudes are chosen based on 

orbit profile and spacecraft characteristics to ensure robust control design. 

 
E. MAGNETIC MOMENTS 

The magnetic moment imparted on the spacecraft by the earth’s magnetic field is 

dependent upon the magnetic field strength, B
v

, and the spacecraft’s magnetic dipole 

vector, m
v

.  The magnetic moment is given by 

mM m B= ×
v vv

         (3.31) 

 
1. Magnetic Field Model 

Highly accurate models of the earth’s magnetic field have been developed but a 

simple dipole model is adequate for the purposes of this simulation.  This approximation 

assumes a simple dipole magnetic field tilted 11 degrees from the earth’s spin axis.  The 

earth’s magnetic field is a function of the earth’s unit dipole vector, M
r

, the distance from 

the center of the earth to the center of mass of the spacecraft, R, and the unit vector in 

that direction, R
r

.  The magnetic field is given by 

( )3

K
B 3 M R R M

R
 = − 

r r r rv
g        (3.32)

where K is the earth’s magnetic field constant equal to 7.943 x 1015 Nm2/a2.  Using 

classical orbital elements it can be shown that the components of the magnetic field 

vector in orbital coordinates are given by 
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( )

( )
O 3

cos( ) cos(å)sin( ) sin(å)cos( ) cos( ) sin( )sin (å)sin( )
K

B cos(å)cos( ) sin(å)sin( ) cos( )
R

2sin( ) cos(å)sin( ) sin(å)cos( ) cos( ) 2cos( ) s in(å)sin( )

i i u u

i i u

i i u u

ν ν

ν ν

− − 
 = − − 
 − + 

v
 

           (3.33)

where ν is the true anomaly of the spacecraft, ε is the magnetic dipole tilt angle, i is the 

orbit inclination, and u is the angle of the magnetic dipole normal to the line of ascending 

nodes.  The SIMULINK subsystem that propagates the earth magnetic field vector with 

the orbital reference is shown in Figure 14. 

 

Figure 14. SIMULINK Subsystem Diagram:  Earth Magnetic Field Vector in Orbital 
Coordinates 

 

The magnetic field vector can be transformed to the spacecraft body coordinates 

with the direction cosine matrix. 

B O
B OB C B=

v v
         (3.34) 

where B OC  is the transformation matrix from the orbit coordinate frame to the body 

frame.  Figure 15 shows the subsystem that realizes this transformation using direction 

cosine matrix components. 
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Figure 15. SIMULINK Subsystem Diagram:  Magnetic Field Conversion to Body 
Coordinates 

 
2. Magnetic Control Torque 

Using magnetic torquers a spacecraft magnetic dipole can be generated to react 

with the earth’s magnetic field to produce a control torque.  In this simulation magnetic 

control can be used to help desaturate the reaction wheels.  The control law for magnetic 

dumping of reaction wheel momentum is given by 

( )cmd B wM k B H= − ×
v v v

        (3.35)

where k is the magnetic torquer gain.  Figure 16 shows the SIMULINK subsystem that 

simulates the magnetic dumping control torque.  Saturation is added to simulate nonlinear 

effects in the torque rods. 

 

Figure 16. SIMULINK Subsystem Diagram:  Magnetic Torquers for Momentum 
Dumping 

 

Magnetic torquers can also be used for attitude control.  The control laws for the 

torquers to produce a desired control moment, CDM
v

, on the spacecraft is given by 

B CD
cm 2

B

B M
M

B

×
=
v v

v
v         (3.36) 
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IV. ATTITUDE REPRESENTATION AND KINEMATICS 
Equation Section (Next) 
 
 

There are many ways of describing the orientation of one coordinate system 

relative to another.  The most common descriptors used in spacecraft attitude 

determination include Euler angles, direction cosine matricies and quaternions, also 

known as Euler parameters [Ref. 10].  Euler angles provide a convenient way to represent 

attitude and are usually the easiest to visualize.  However, singularities arise when the 

relative orientation from the reference coordinate system becomes large.  Therefore, 

highly maneuverable spacecraft require other means of attitude representation.  Direction 

cosine matricies and quaternions overcome this problem.  Direction cosine matricies 

provide the most convenient way of transforming vectors between coordinate systems but 

require significantly higher attitude processor throughputs than quaternions.  As an 

example, propagating an attitude matrix with angular rate data requires the integration of 

nine elements while the quaternion has only four.  For these reasons, the quaternion 

representation is chosen for this attitude simulation model. 

 
A. QUATERNION DEFINITION AND CHARACTERISTICS 

The four vector quaternion based representation 4q R∈
v

 can be written as 

1

2

3

4

q

q
q

q

q

 
 
 =
 
 
  

v
         (4.1)  

or equivalently, 

1 2 3 4q q q q qi j k= + + +v
       (4.2)   

where the quaternion has a three vector imaginary part 

1

I 2

3

q

q q

q

 
 =  
  

v and a scalar real part R 4q q= . 
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1. Meaning of Quaterions 

Quaternions represent the angular orientation of a body relative to a reference 

coordinate frame by a single axis rotation of magnitude è  about the eigenvector axis 

given by ë
v

 corresponding to the +1 eigenvalue of the direction cosine or attitude matrix.  

The direction cosine matrix can be written in terms of these four parameters 

3 2
T

3 1

2 1

1 0 0 0 - ë ë

A 0 1 0 cos(è) ë 0 -ë sin(è) ëë (1 cos(è))

0 0 1 - ë ë 0

   
   = + + −   
      

vv
(4.3) (4.4) 

Similarly these parameters can be represented by the four quaternions 

1 1

I 2 2

3 3

R 4

që
è

q q ë sin
2

që

è
q q cos

2

   
    = =             

 = =  
 

v

       (4.5) 

which have the added property that 

2 2 2 2
1 2 3 4q q q q q 1= + + + =v        (4.6) 

 
2. Attitude Matrix 

The equivalent attitude or direction cosine matrix can be generated from 

quaternions using 

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 1 2 3 4

q q q q 2(q q q q ) 2(q q q q )

A 2(q q q q ) q q q q 2(q q q q )

2(q q q q ) 2(q q q q ) q q q q

 − − + + −
 = − − + − + + 
 + − − − + + 

  (4.7) 

The SIMULINK subsystem used in this simulation model to convert a quaternion to the 

equivalent attitude matrix is shown in Figure 17. 
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Figure 17. SIMULINK Subsystem Diagram:  Attitude Matrix from Quaternions 
 
3. Quaternion Multiplication 

The multiplication of two quaternions to form a third defines an angular 

orientation resulting from two eigen-axis rotations.  If q′v  represents the transformation 

from coordinate frame A to B and q′′v  represents the transformation from frame B to C 

then the transformation from frame A to C is given by 

q q q′ ′′=v v v
         (4.8) 

This multiplication can be implemented several ways.  The two quaternions can 

be multiplied directly using the quaternion format given in Equation (4.2) 

1 2 3 4 1 2 3 4 1 2 3 4(q q q q ) (q q q q )(q q q q )i j k i j k i j k′ ′ ′ ′ ′′ ′′ ′′ ′′+ + + = + + + + + +   (4.9) 

using the equalities 

2 2 2 1i j k

ij ji k

jk kj i

ki ik j

= = = −
= − =
= − =
= − =

        (4.10) 

Quaternion multiplication can also be performed by treating the imaginary and real parts 

separately 
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I R I R I I I

R R R I I

q q q q q q q

q q q q q

′ ′′ ′′ ′ ′ ′′= + + ×
′ ′′ ′ ′′= −

v v v v v

v v
g

       (4.11) 

In matrix form quaternion multiplication is given by 

4 3 2 11 1

3 4 1 22 2

2 1 4 33 3

1 2 3 44 4

q -q q qq q

q q -q qq q

-q q q qq q

-q -q -q qq q

′ ′ ′ ′ ′′    
    ′ ′ ′ ′ ′′    =

′ ′ ′ ′ ′′    
    ′ ′ ′ ′ ′′        

      (4.12) 

This multiplication method is used in the attitude simulation.  The SIMULINK subsystem 

is shown in Figure 18. 

 

Figure 18. SIMULINK Subsystem Diagram:  Quaternion Multiplication 
 
4. Coordinate Rotations 

Sequential axis rotations such as those that define the three Euler angle 

representation can be realized by the successive quaternion products.  Additionally, if 

there are three small simultaneous rotations 1è , 2è , and 3è  about the coordinate axes x, y, 

and z respectively the resulting quaternion is determined as follows: 

Let 2 2 2 1 / 2
1 2 3(è è è )Θ = + +  and 

1

2

3

è
1

=è

è

θ
 
 
 Θ
  

v
, then 

 
1

I 2

3

q

q q sin
2

q

θ
 

Θ  = =       

vv
 and R 4q q cos

2

Θ = =  
 

    (4.13) 
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5. Quaternion Inverse and Identity 

The inverse of a quaternion is its complex conjugate and is analogous to the 

transpose of a direction cosine matrix.  A quaternion is conjugated by reversing the sign 

on the vector part. 

If 

1

2

3

4

q

q
q

q

q

 
 
 =
 
 
  

v  then 

1

2*

3

4

-q

-q
q

-q

q

 
 
 =
 
 
  

v . 

The identity quaternion is found by multiplying any quaternion by its conjugate as 

shown below. 

* *

0

0
qq q q

0

1

 
 
 = =
 
 
 

vv v v
        (4.14) 

 
6. Quaternion Error 

A difference quaternion can be defined between to orientations that are referenced 

to the same coordinate frame.  If q′v  represents the transformation from coordinate frame 

A to B and q′′v  represents the transformation from frame A to C then the transformation 

from frame B to C is given by 

4 3 2 1 1

3 4 1 2 2*

2 1 4 3 3

1 2 3 4 4

q q -q -q q

-q q q -q q
q q q

q -q q -q q

q q q q q

′ ′ ′ ′ ′′   
   ′ ′ ′ ′ ′′   ′ ′′= =

′ ′ ′ ′ ′′   
   ′ ′ ′ ′ ′′     

v v v      (4.15) 

This can be used to calculate the error quaternion where the target orientation is 

given by q′v and the actual spacecraft orientation is q′′v . 

*
eq q q′ ′′=v v v

         (4.16) 
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The SIMULINK subsystem diagram for determining the error quaternion is given in 

Figure 19. 

 

Figure 19. SIMULINK Subsystem Diagram:  Error Quaternion 
 

The angular difference in radians between the original quaternions is contained in 

the real part of the error quaternion. 

1
e 4eè 2cos (q )−=         (4.17) 

 
7. Vector Transformations 

Transforming vectors between coordinate systems requires two quaternion 

multiplications where the vector is treated as quaternion with a real part of zero.  If q
v

 

represents the orientation of coordinate frame B with respect to reference frame A then a 

vector given in coordinates of the reference frame, Av
v

, can be transformed to the 

coordinates of frame B by 

*
B Av q v q= v vv v

         (4.18) 

 
B. QUATERNION KINEMATICS 

Actual spacecraft motion is simulated using the continuous quaternion differential 

equations.  In the attitude determination computer simulation the attitude propagator uses 

the discrete kinematic equations. 
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1. Continuous Kinematics 

The differential equation for the quaternions of a rotating coordinate system can 

be found by differentiating this equation with respect to a fixed reference frame A.  If the 

rotational rates for coordinate frame B are given by 

x

y

z

ù

ù ù

ù

 
 =  
  

v , then A B

I B

dv dv
0

dt dt
= =

v v
 and B

B
I

dv
ù v

dt
= ×

v
v v  

The inertial derivative of equation (4.18) becomes 

*
*

B A A

dq dq
ù v v q q v

dt dt
× = +

v v
v v vv v v

       (4.19) 

Using the properties of quaternions, substituting the original equation for Bv
v

 and 

noting that the vector Av
v

 is arbitrary it can be shown that 

dq 1
qù

dt 2
=

v
v v

         (4.20) 

or in matrix differential form 

3 2 11 1 1

3 1 22 2 2

2 1 33 3 3

1 2 34 4 4

0ù -ù ùq q q

-ù 0 ù ùq q qdq 1 1
S(ù )

ù -ù 0 ùq q qdt 2 2

-ù -ù -ù 0q q q

      
      
      = = =
      
      

            

&
v & v

&

&

   (4.21) 

where T

-S(ù ) ù
(ù )

-ù 0
S

 
=  

 

v v
v

v  and S(ù )
v

is the skew symmetric matrix associated with the 

vector ù
v

.  The kinematics subsystem diagram used in the SIMULINK model is shown in 

Figure 20.  The integration is performed using the Dormand-Prince ode5 solver. 
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Figure 20. SIMULINK Subsystem Diagram:  Continuous Kinematics 
 

2. Discrete Kinematics 

The solution to the continuous differential equation when ù
v

 is held constant is 

( ) ( )
( )

1
S(ù)t

2
0 4 4 0

sinèt
q e q cosè ù q

2èxI S
 
  

  = = +     

v
v v v v

    (4.22) 

where 
ù t

è
2

= .  This solution leads to the discrete implementation of the quaternion 

kinematic equations. 

The attitude determination system uses angular rate information to kinematically 

propagate the spacecraft attitude quaternion in discrete time steps.  The angular rate 

vector 3ù R∈v  is integrated with time step t∆  to produce the incremental angle vector 

3è R∆ ∈
v

.  For small time steps è∆
v

 approximates an eigen-axis rotation in the current 

body coordinate frame so it can be related to the change in the attitude quaternion by 

1 2 3
Äè ÄèÄè Äè Äè

Äq sin +cos
2Äè 2

i j k    + +
≅          

v
    (4.23) 

The SIMULINK subsystem used in the discrete attitude propagator to obtain the 

incremental quaternion step is shown in Figure 21. 
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Figure 21. SIMULINK Subsystem Diagram:  Discrete Attitude Propagator 
 

The new attitude quaternion is simply determined by 

new oldq =q ( Äq)
v v v

         (4.24) 

where the equation implies quaternion multiplication. 
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V. KALMAN FILTER 
Equation Section (Next) 
 
 

The Kalman filter provides a non-deterministic means of estimating a system state 

vector using a state space mathematical plant model and sensor measurement data related 

to some subset of the state variables.  It is a stochastic optimal estimator designed to 

minimize the weighted mean square error in the state estimate.  The Kalman gain matrix 

determines the weighting based on the relative confidence between the past state estimate 

propagated to the current time and the current partial measurement of state variables.  

The error covariance matrix, the second statistical moment of the state vector, tracks the 

confidence in the state estimate while a measurement error covariance matrix relates the 

confidence in the measurement. 

 
A. RECURSIVE DISCRETE KALMAN FILTER 

The Kalman filter can be implemented recursively since all of the information 

from past state measurements is encapsulated in the previous state estimate and error 

covariance matrix with are both tracked.  During state propagation the error covariance is 

updated to reflect additional error added by imperfections in the plant model.  A recursive 

discrete Kalman filter is used in the proposed attitude determination scheme.  Figue 22 

illustrates the recursive nature of the Kalman filter. 
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Figure 22. Discrete Kalman Filter Loop 
 

The standard equations for a recursive discrete Kalman filter are summarized in 

Table 2 below.  For full background development and equation derivations see Appendix 

A [Ref. 1]. 

System/plant Model 
k k-1 k-1 k-1

k k

xö x w

w ~ N(0,Q )

= +v v v

vv  

Measurement Model 
k k k k

k k

z H x v

v ~ N(0,R )

= +v v v

vv  

Initial Conditions 
0 0

T
0 0 0 0 0

x̂ E[x ]

ˆ ˆP E[(x x )(x x ) ]

=

= − −

v v

v v v v  

Assumptions 
(uncorrelated errors) 

k jE[w v ] 0=v w  

for all j, k 
Prediction State Estimate Extrapolation 

Error Covariance Extrapolation 

- +
k k-1 k-1

ˆ ˆxö x=v v
 

- + T
k k-1 k-1 k-1 k-1Pö P ö Q= +  

Correction Kalman Gain Matrix 

State Estimate Update 

Error Covariance Update 

- T - T -1
k k k k k k kK P H (H P H R )= +  

+ - -
k k k k k k

ˆ ˆ ˆx x K (z H x )= + −v v v v
 

+ -
k k k kP (I K H )P= −  

Table 2. Discrete Kalman Filter Equations 
 

 

PREDICTION 

CORRECTION 

 
ENTER 
INITIAL 

ESTIMATE 
AND ERROR 

COVARIANCE 

 
PROPAGATE 

ESTIMATE AND ERROR 
COVARIANCE TO NEXT 
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B. ERROR STATE EXTENDED KALMAN FILTER IMPLEMENTATION 

A linear error state extended discrete Kalman filter is implemented in the 

simulated attitude determination model to estimate spacecraft attitude and angular rate.  

The nonlinear attitude propagation is performed discretely outside of the Kalman filter 

according to Equations (4.23) and (4.24) at the high bandwidth frequency of the attitude 

processor.  The angular rate estimate used in the kinematic model is provided by the 

spacecraft gyros or pseudo gyro rate calculations.  The Kalman filter is designed to 

provide bias corrections to the gyro outputs for attitude propagation [Ref.11].  If the 

pseudo gyro rate is used, the bias error is treated as a rate error from which a correction to 

the system angular momentum is determined.  Measurement updates are provided by star 

trackers.  The difference in the measured and predicted star vector is related to the 

attitude error and used to provide corrections to the state estimate. 

 
1. State Variables 

The Kalman filter used in this model estimates six state variables:  a three vector 

of attitude errors, 3è R∈% , and a three vector of gyro bias errors, 3b R∈% .  The total state 

vector is given by 

6è
x=

b
R

 
∈ 

  

%v
%

         (5.1) 

The attitude error, è% , represents the deviation in the spacecraft attitude relative to 

the inertial reference frame given by a vector of three simultaneous rotations.  The bias 

error, b% , represents the change in bias of the angular rate data in the spacecraft body 

coordinate frame. 

 
2. Attitude Propagation Error Correction Methods 

There are two ways to implement the Kalman filter corrections to the attitude 

propagator.  In the first method, the attitude propagator is fed with raw gyro rate 

information and the Kalman filter maintains the total gyro bias tracking with the state 

bias error, b% .  In this method, the attitude quaternion must be corrected at each time step 
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by the filter.  The attitude error vector, è% , is converted to an incremental quaternion 

rotation, Äq
v

 and applied to the propagated attitude quaternion as shown in Chapter IV 

with Equations (4.23) and (4.24) or, using the small angle approximation Äq
v

 is given by 

31 2 èè è
Äq= 1

2 2 2
i j k+ + +

%% %v
       (5.2)

Then by quaternion multiplication the propagated attitude quaternion is updated 

new oldq =(Äq)q
v v v

         (5.3) 

The alternative method of applying the filter correction to the propagator is to use 

the bias error state, b% , to correct the unknown gyro bias, bù
v

 each time a measurement 

update is obtained 

bnew boldù ù b= +v v %         (5.4)  

For this method, the total unknown gyro bias is tracked separately from the filter and 

added to the gyro angular rate before it is fed to the attitude propagator. 

( )g bÄè ù ù Ät= +
v v v

        (5.5)  

The attitude error state correction is then only necessary at measurement updates.  Using 

this method allows the Kalman filter error vector x
v

 to be reset after each bias 

measurement update.  Since the filter approximates nonlinear errors with a linear model, 

keeping the errors as close to zero as possible improves the estimate.  This Kalman filter 

correction method is used in the simulated attitude determination model. 

 
3. Plant Model 

A nominal plant model is chosen for this Kalman filter which assumes a constant 

rate bias between filter updates and uncoupled (linear) attitude errors between 

propagation steps.  It is derived from the continuous equation of state 

T
3X3

3X3 3X3

ˆdè dt è0 Adx
= = = (t)x

dt 0 0db dt b
f

    
    
       

v % % v
% %

     (5.6) 

where Â  is the estimate of the spacecraft attitude or direction cosine matrix.  This linear 
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state equation includes coupled rotational effects through the time variant estimated 

attitude matrix which changes dynamically. 

 
4. State Transition Matrix 

For the discrete Kalman filter implementation of this model the state transition 

matrix, kö , is calculated for each time step using the matrix exponential of f(t) from the 

continuous state equation 

T
(t)Ät 3 3 k

k

3 3 3 3

ÂÄt
ö e

0
f X

X X

I

I

 
= =  

 
       (5.7) 

where T
kÂ  is the transpose of the estimated attitude matrix at the current discrete time, tk 

and Ät  is the interval between steps.  The SIMULINK subsystem used to calculate the 

state transition matrix is shown in Figure 23.  The estimated attitude matrix is calculated 

from the propagated attitude quaternion using Equation (4.7). 

 

Figure 23. SIMULINK Subsystem Diagram:  State Transition Matrix 
 
5. Kalman Filter Prediction Equations 

The state transition matrix allows the state estimate, x̂
v

, and associated error 

covariance matrix, P, to be propagated forward in the discrete Kalman filter prediction 

step 

-
k+1 k k

ˆ ˆx = ö x
v v

         (5.8) 

- T
k+1 k k kP = ö P ö +Q        (5.9)

The subscript k+1 indicates next discrete time step, tk+1, and the superscript – indicates 

predicted future value based only on information up to the current time step tk.  The 

covariance matrix relates the confidence in the associated state estimate.  A larger P 
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indicates less confidence which means that the attitude determination system is assumed 

to have larger errors.  Measurement updates taken when P is large will greater impact on 

the estimate than those taken when the confidence is high.  The Kalman filter prediction 

step is implemented in the SIMULINK model as shown in Figure 24. 

 

Figure 24. SIMULINK Subsystem Diagram:  Kalman Filter Prediction Step 
 
6. Plant Noise Covariance 

The plant noise covariance, Q, is a positive definite matrix that characterizes the 

plant error accumulated through the time step, Ät , assuming that it can be modeled as 

Gaussian white noise meaning normally distributed with zero mean.  Q is normally taken 

to be a diagonal matrix meaning that there is no known correlation between the errors of 

the six state variables.  In terms of the variances of the state variables the plant noise 

covariance matrix is given by 

2
è1

2
è2

2
è3

2
b1

2
b2

2
b3

ó 0 0 0 0 0

0ó 0 0 0 0

0 0 ó 0 0 0
Q=

0 0 0 ó 0 0

0 0 0 0 ó 0

0 0 0 0 0 ó

 
 
 
 
 
 
 
 
  

      (5.10) 

If the time step is varied or the plant error is known to be significantly changed 

due to operating mode, then Q should be modified to reflect that change.  Decreasing Q 

effectively asserts that the plant generates less error and the predicted state estimate will 
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be weighted higher relative to the measurement updates.  On the other hand, if it is 

increased less confidence is placed on the estimate predicted by the model and more 

significant corrections will be applied during measurement updates.  In this simulation, Q 

is taken to be constant. 

 
7. Kalman Filter Initialization 

In order to initiate the Kalman filter algorithm, an initial state estimate, ix̂ and its 

associated covariance, Pi, must be chosen.  Least squares batch processing can be 

performed on two or more star tracker measurements prior to initiating the filter or an 

educated guess can be used.  Since the state represents errors from truth, the selected 

initial state estimate is 

i

0

0

0
x̂ =

0

0

0

 
 
 
 
 
 
 
 
  

v
 with associated covariance i

100 0 0 0 0 0

0 100 0 0 0 0

0 0 100 0 0 0
P =n

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
  

.  The 

constant, n, is chosen to reflect confidence in the estimate at initialization.  The attitude 

errors generated are normally about an order of magnitude up from the rate bias errors so 

the variances are weighted higher. 

 
8. Sensor Measurement Update 

The state estimate and the covariance matrix propagate forward without 

correction through each time step until a measurement update is produced.  The state 

estimate is used to kinematically propagate the attitude quaternion while the covariance 

matrix builds up due to the added error through each step. 

 
a. Measurement Vector 

If an attitude measurement update is produced at the next time step, k+1, 

by one or more star trackers the Kalman filter correction step is applied.  The star trackers 

produce horizontal and vertical outputs (H,V) corresponding to the position of the star on 
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the detector array.  These outputs are internally compensated for with software and 

calibrated to form a measurement vector in tracker coordinates 

m

H

s = V

1

 
 
 
  

v with the normalization m
m

m

s
s =

s

v
v

v      (5.11)

which is the star tracker measurement vector.  For simulation modeling purposes, noise is 

added to the H and V components to create an artificial star tracker measurement vector.  

The measurement vector is generated in the SIMULINK model as shown in Figure 25. 

 

Figure 25. SIMULINK Subsystem Diagram:  Star Tracker Measurement 
 

At every integration cycle, Ät , the attitude estimate is available from the 

Kalman filter prediction step.  If a star tracker observation has occurred during that time 

step, the measurement vector must be propagated ahead to correspond to the current 

discrete time of the attitude computer.  Otherwise, the state vector and the state transition 

and covariance matricies must be interpolated to accomplish the filter update.  Tracker 

processing latencies and transport delays must also be compensated for in the time 

difference.  For simplicity in this model, it is assumed that the all observations occur at an 

exact discrete time step of the integration cycle.  To produce star measurements for the 

model, an artificial star tracker reference is chosen with representative noise applied to 

the H and V outputs. 

 
b. Predicted Measurement 

The predicted vector in star tracker coordinates is needed to determine the 

measurement residual for the update.  This is generated using the known position of the 

star in inertial space.  The detected star goes through the identification process and gets 
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compensated for aberration to yield a unit vector, sI, in inertial coordinates.  Using the 

estimate for the inertial to body attitude matrix generated from the filter state prediction, 

-
k+1Â , and the calibrated body to star tracker transformation matrix, T, a predicted vector 

is generated in tracker coordinates. 

-
p k+1 I

ˆs =T A s
v v

         (5.12) 

The inertial star vectors for the model are generated by applying the 

transpose of the body to star tracker and true attitude matricies to the same star tracker 

reference used to generate the measurement. 

T T
I k+1

H

s =A T V

1

 
 
 
  

v         (5.13)

Figure 26 illustrates the SIMULINK subsystem used to produce a simulated inertial star 

reference vector. 

 

Figure 26. SIMULINK Subsystem Diagram:  Inertial Star Vector 
 

c. Measurement Residual 

The measurement residual, zk+1, is formed by subtracting the predicted 

from measured star vector and considering only the first two components. 

k+1 m pz =E(s s )−v vv         (5.14)

where 
1 0 0

E=
0 1 0

 
 
 

.  The measurement residual is determined in the SIMULINK model 

as shown in Figure 27. 
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Figure 27. SIMULINK Subsystem Diagram:  Measurement Residual 
 
9. Observation Matrix 

Since the measurement residual is simply the difference between unit vectors, it is 

easily related to the state attitude errors.  The observation or feedback sensitivity matrix 

defined by the relationship to the state variables 

( )-
k+1 k+1 I 2x3

ˆH = E T A S s 0 
 

v
       (5.15)

where IS(s )
v

indicates the skew symmetric matrix associated with the inertial star 

reference vector.  Figure 28 shows the subsystem diagram used in the SIMULINK model 

to produce the observation matrix. 

 

Figure 28. SIMULINK Subsystem Diagram:  Observation Matrix 
 

10. Kalman Gain 

The Kalman gain can then be calculated for the correction step at k+1 from the 

standard discrete filter equation 

- T - T -1
k+1 k+1 k+1 k+1 k+1 k+1 k+1K =P H (R +H P H )       (5.16) 

where 2 2R XR∈  is the measurement noise covariance matrix associated with the assumed 

Gaussian white noise in the H and V outputs of the star trackers.  Since these errors are 



55 

usually similar and uncorrelated, the R matrix is normally taken to be a multiple of the 

identity. 

2
H

2
V

ó 0
R=

0ó

 
 
 

 

Noisier or less accurate star trackers will generally have a larger R matrix which 

decreases the Kalman gain and thus provides less of a correction to the state and 

covariance matricies.  In reality, the measurement error may not be constant for each 

correction step even when the same star tracker is used.  Higher intensity stars, although 

easier to detect and identify, produce slightly larger noise.  Also stars detected toward the 

field of view limits of the tracker usually have larger errors due to distortions than those 

detected near the star tracker optical axis. 

The Kalman gain SIMULINK subsystem is shown in Figure 29. 

 

Figure 29. SIMULINK Subsystem Diagram:  Kalman Gain 
 

11. Kalman Filter Correction Equations 

With the Kalman gain, the state and covariance matricies can be corrected with 

the measurement update 

k+1 k+1
ˆÄx= K z−v v

        (5.17) 

-
k+1 k+1

ˆ ˆ ˆx =xÄx+v v v
        (5.18)

and 

-
k+1 6X6 k+1 k+1 k+1P =( K H )PI −        (5.19)

The covariance matrix update is accomplished in the simulation model as shown in 

Figure 30. 
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Figure 30. SIMULINK Subsystem Diagram:  Covariance Updeate 
 

In general, the estimated state drifts away from the true state as it is propagated 

forward with the non-ideal plant model and is corrected back toward truth as 

measurement updates occur.  Corrections to the attitude components associated with the 

body axes closely aligned with the star tracker optical axis will be corrected much less 

than those that are aligned perpendicular.  The spacecraft attitude error continues to grow 

during periods where there are no cataloged stars in the sensor field of view or when the 

tracker information is unavailable.  Additionally, when only one tracker provides updates 

for extended periods the angular orientation about that star tracker’s axis in body 

coordinates goes unchecked. 

 
C. CONTROLLER DESIGN IMPLICATIONS 

Since the Kalman filter is an optimal least squares estimator, the development of 

an optimal controller can be accomplished independently.  Therefore, the attitude 

determination output should not affect the controller design.  In this model, quaternion 

and rate error control laws are used as well as feed forward torque to generate reaction 

wheel commands.  The optimal gains for the controller as determined by simulation with 

ideal deterministic attitude knowledge remain optimal with the attitude determination 

based on Kalman filter state estimates. 
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VI. DYNAMIC RATE CALCULATION 
Equation Section (Next) 
 
 

The continuous dynamic equations of motion for the Bifocal Relay Mirror 

spacecraft are derived in Chapter III.  These equations produce the spacecraft angular rate 

from external control and disturbance moments applied to the body.  A similar discrete 

model can be applied in the spacecraft attitude processor software to produce a real time 

calculated estimate of the angular rate, referred to as the dynamic gyro.  This process is 

borrowed from The Aerospace Corporation’s “Pseudo Gyro” concept [Ref. 8].  At high 

bandwidth processor execution the discretization of the dynamics introduces little error.  

The angular rate generated by this method can be used as a substitution for conventional 

gyroscope outputs.  Attitude determination based on the dynamic gyro can be 

implemented as a back up failure mode or a primary operating mode to increase the 

expected lifetime of the satellite gyroscopes. 

 
A. DISCRETE EQUATIONS OF MOTION 

The discretized equations of motion are derived from 

H M t∆ = ∆∑
v v

         (6.1)

where M∑
v

 is the sum of external moments applied to the spacecraft including controls, 

modeled disturbances and gyroscopic stiffness.  This allows the total system angular 

momentum to be tracked with 

k+1 kH H H= + ∆
v v v

        (6.2)

Then subtracting the relative momentum of the reaction wheels and secondary body 

produces 

S- w relH H H H= − −
v v v v

        (6.3)

The calculated spacecraft angular rate is then given by 

-1
S-ù I H=

vv
         (6.4) 
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B. MOMENTUM CORRECTION FROM KALMAN FILTER UPDATES 

The accuracy of the dynamic angular rate calculation ultimately depends on the 

tracking of the system angular momentum.  If uncorrected, the numerous error sources in 

the model will cause the angular rate error to grow over time.  The error state Kalman 

filter designed for gyro-based attitude determination systems can be used to provide the 

necessary model corrections.  The gyro bias error states, b% , are interpreted as spacecraft 

body rate errors.  Using the calculated spacecraft inertia matrix, I, a correction to the 

system moment of inertia can be generated by 

corrÄH I b=
v %          (6.5)  

The Kalman filter momentum correction is applied as if the error in the dynamic gyro is 

attributable to the total spacecraft body.  The relative momentum terms from the 

secondary body and the reaction wheels are treated as if they are without error. 

The SIMULINK dynamic gyro subsystem used in the attitude simulation model is 

illustrated in Figure 31. 

 

Figure 31. SIMULINK Subsystem Diagram:  Dynamic Gyro 
 
C. INPUTS AND ERROR SOURCES 

After initial calibration, kinematic plant error in gyro-based attitude determination 

systems is almost entirely attributable to a single set of imperfect gyroscope rate sensors.  

As long as gyro data does not become erratic a Kalman estimator based on a slowly 
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changing rate bias plant model produces an effective attitude determination system even 

with relatively noisy rate inputs. 

The error in rate calculations from dynamic modeling, on the other hand, is due to 

numerous factors and is much harder to characterize.  There are multiple internal sensors 

involved as well as dynamic modeling simplifications.  Since the dynamic calculation is 

produced from total system momentum tracking any error in knowledge of external 

torques directly correlates to rate error.  Errors in system or component moments of 

inertia have the same effect.  Like gyro outputs, internal position and rate sensor data are 

corrupted by measurement and alignment errors.  These data from all moving appendages 

and momentum exchange devices are critical to the accuracy of the rate calculation.  

Satellites not designed to use dynamic rate calculations for attitude determination are 

usually not equipped with appendage relative rate measurement sensors.  These data must 

either be derived adding more error to the calculation or substituted with commanded 

rates.  It is important that all known biases be removed from sensor data and calculated 

input errors since the Kalman filter estimator is based on the assumption of uncorrelated 

zero-mean Gaussian noise.  Even if all input parameters were known exactly the discrete 

modeling of the spacecraft dynamics introduces some error. 

 
1. External Control and Disturbance Torques 

In the dynamic gyro, known externally applied moments are integrated in the 

system angular momentum calculations.  These include control moments other than those 

imparted by momentum exchange devices as well as modeled disturbance torques.  Since 

control torques are normally of significant magnitudes, it is essential that they be 

modeled correctly.  Moments from magnetic torque rods depend on the imperfectly 

controlled magnetic dipole and the earth’s magnetic field strength.  The magnetic dipole 

is provided by torquer current measurement.  The earth’s magnetic field must either be 

modeled or measured with magnetometer but is not precisely known.  Reaction jet 

moments are almost impossible to model accurately.  This often result in degraded 

pointing and tracking during firings operations. 

The effects of external disturbance moments depends on spacecraft configuration 

and orbital profile.  Those disturbances that have significant effects on vehicle dynamics 
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should be modeled whenever possible to increase the accuracy of the attitude control 

system.  These types of errors are non-zero mean in the short term and therefore can only 

be corrected for with sensor measurement updates.  An extended option for The 

Aerospace Corporation’s Pseudo Gyro includes a torque bias estimator to reduce the 

effects of unknown external disturbances. 

For the Bifocal Relay Mirror satellite, the gravity gradient torque is the most 

significant disturbance and can be modeled as an input to increase the accuracy of the 

dynamic rate calculation.  The model is well understood and is generated from the inertia 

matrix which is already required by the dynamic gyro and vehicle orientation with 

respect to the gravity vector which can be determined from the estimated attitude and 

ephemeris data.  The gravity gradient model used by the dynamic gyro is equivalent to 

the subsystem shown in Figure 13. 

 
2. Reaction Wheel Relative Momentum 

Instead of integrating the torques produced by momentum exchange devices their 

relative momentum effects are used directly in the dynamic rate calculation.  The relative 

momentum of each reaction wheel is given by its orientation within the spacecraft, the 

component inertia of its spinning disk and the wheel spin rate.  The imperfect sensor 

measurements from the reaction wheel tachometers introduce errors in system 

momentum calculation.  Relative orientation angles of reaction wheels are fixed and 

errors can be corrected through calibration.  Orientations of control moment gyros, 

however, are variable.  Since these devices usually carry much more momentum small 

gimbal resolver errors can have a significant impact on total system momentum 

calculations.  In this simulation, time varying artificial alignment errors are applied to the 

reaction wheel momentum measurements to observe these effects.  The error corrupted 

wheel momentum measurement subsystem implemented in the SIMULINK model is 

shown in Figure 32. 
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Figure 32. SIMULINK Subsystem Diagram:  Error Corrupted Reaction Wheel 
Momentum Measurement 

 
3. Moment of Inertia Calculations 

The calculation of the total spacecraft inertia matrix is accomplished by Equation 

(3.12) using the SIMULINK subsystem illustrated in Figure 7.  Fixed component 

moments of inertia and masses of the primary and secondary bodies are assumed to be 

known as well as the relative positions of their centers of mass from the system mass 

center.  Imperfect knowledge of these parameters introduces errors in the angular rate 

calculation.  Errors generated from rotating spacecraft components are not constant in the 

spacecraft body frame. 

The inertia matrix also depends on internal sensor input from position encoders or 

potentiometers for relative angular orientation of appendages.  The model of the 

potentiometer that measures the relative angle of the receive telescope includes 

quantization effects and additive noise.  If appendage relative motion is slow or 

component moments of inertia are small, it may not be necessary to update the system 

inertia dyadic at the bandwidth of the attitude processor.  A trigger is added to the 

SIMULINK subsystem that calculates the inertia matrix (Figure 7), so that the affects of 

update rate can be evaluated. 

 
4. Appendage Relative Momentum 

Knowledge of appendage relative momentums has direct bearing on the system 

momentum and therefore the dynamic rate calculation.  The relative momentum of the 

Bifocal Relay Mirror satellite’s secondary body is calculated from Equation (3.19).  It 
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depends on the knowledge of the fixed secondary body inertia matrix and the relative 

angular rate.  The attitude simulation model assumes that there is no directed 

measurement of the relative angular rate.  The rate must therefore be derived from 

potentiometer measurements of the relative orientation about the axis of rotation.  This 

sensor may have a minimum discernable incremental angle and noise corruption.  Also, 

since the rate is derived from position measurements it exhibits increased noise and time 

lag.  The simulation diagram that produces the error corrupted relative angle and rate for 

the spacecraft secondary body is shown in Figure 33. 

 

Figure 33. SIMULINK Subsystem Diagram:  Appendage Relative Angle and Rate 
Measurement 

 

Appendages of significant inertia or relative rates like the receive telescope of the 

Bifocal Relay Mirror satellite should be controlled with smooth gimbal drive motors in 

order to minimize nonlinear relative pointing errors.  Ideally, all moveable appendages 

would have an associated rate sensor for each axis of rotation. 

The other option for approximating appendage relative angular rates is to use the 

commanded drive input.  In some systems, appendage controllers can provide a smooth 

relative rate through the drive motor, which significantly enhances angular momentum 

tracking.  Drive actuators with considerably erratic friction effects will cause errors in the 

attitude control system during slew operations.  Short term transients may introduce 

significant settling times for error corrections. 

The subsystem of the attitude determination simulation that controls all of the 

internal sensor measurements and input parameter calculations for the dynamic gyro is 

shown in Figure 34. 
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Figure 34. SIMULINK Subsystem Diagram:  Dynamic Gyro Inputs 
 
D. CALCULATED ANGULAR RATE ERROR CORRECTION 

The error state extended Kalman filter is designed to track rate bias errors that are 

relatively constant in the spacecraft body frame.  This is a good approximation for 

properly functioning gyro based systems.  For the filter to remain effective when used 

with dynamic gyro, the bias in the output rate as seen in body coordinates due to the 

various error sources must be small and exhibit a bandwidth below the measurement 

update rate.  Since it is the case that the common error sources are not zero-mean, their 

effects on the rate output must be relatively constant so that the momentum correction 

supplied by the Kalman filter applies over the update interval.  Transient error spiking 

can require multiple star tracker measurement updates to correct.  If the internal sensors 

provide inconsistent measurements, dynamic gyro angular rate will be degraded. 
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VII. RESULTS 
Equation Section (Next) 
 
 

Simulation results demonstrate that multi-body spacecraft attitude control without 

the use of rate gyroscopes can be performed using the attitude and angular rate estimation 

scheme proposed in this thesis.  The performance of dynamic gyro based attitude 

determination system is compared with a similar gyro based system using the Bifocal 

Relay Mirror attitude simulation.  Simulation input parameters are varied to analyze the 

effects of major error sources on the dynamic gyro model.  Also evaluated are the effects 

of star tracker accuracy and measurement update rates on the attitude determination 

system. 

 
A. BASELINE SIMULATION 

A full set of MATLAB plots are presented in this section for baseline analysis of 

the dynamic gyro based attitude determination and control scheme developed in this 

thesis.  This set of results validates the potential effectiveness of the proposed attitude 

and angular rate estimating scheme used for multi-body spacecraft control.  It also 

provides a common reference for analysis and comparison with subsequent simulation 

results.  For other simulations, only selected plots that are required for analysis of results 

will be shown. 

 
1. Simulation Input Parameters 

Table 3 shows the inputs parameters that are held constant for each simulation run 

used to obtain results.  These input parameters are set in the MATLAB script file that 

calls the SIMULINK attitude simulation.  The MATLAB code file is included as 

Appendix B. 

SIMULATION PARAMETERS (SIMULINK) 
Simulation Time Period 500 sec 
Attitude Determination Bandwidth 20 Hz 
SIMULINK Solver Method ode5 (Dormand-Prince) 
Solver Fixed Step Size 0.05 sec 

ORBIT PARAMETERS (Circular Orbit) 
Altitude 715 km 
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COMMANDED MANEUVER PROFILE 
Inertial Attitude Quaternions See Figure 35 
Body Axes Angular Rates See Figure 36 
Secondary Body Relative Angle See Figure 37 

DISTURBANCE MOMENTS 
Gravity Gradient Modeled 
Secular (Magnitude) 1e-4 Nm 
Periodic (Magnitude, Period) 4e-4 Nm, [400,500,600] sec 
Disturbance Effect on System Angular 

Momentum 
See Figure 38. 

MOMENTS OF INERTIA MATRICIES 
Primary Body [2997.28025,-

3.9331,118.2824 
-3.9331,3164.18285,1.1230 
118.2824,1.1230,881.82105] 

kgm2 
Secondary Body [1721.07340,-0.0116,-

7.8530 
-0.0116,1559.85414,-

12.5463 
-7.8530,-

12.5463,182.89962] kgm2 
CENTER OF MASS OFFSET FROM SPACECRAFT C.M. 

Primary Body [0.558354158, 
3.91788e-4, 
0.15226902]  m 

Secondary Body [-1.302113918, 
-9.13673e-4, 
0.355100092]  m 

WHEEL CONTROL LAWS 
Quaternion Error Gains (Kq) [3000,7000,4500] 
Angular Rate Error Gains (Kw) [1000,2000,1000] 
Control Law Delay for Initial 

Determination Errors 
30 sec 

GYROSCOPE CHARACTERISTICS 
Static Rate Biases 1e-4*[-1,1.5,1] rad/sec 
Rate Noise Variance 1e-8 
Acceleration Noise Variance (Rate 

Random Walk) 
1e-12 

3 Gyro Alignment Aligned to Body Axes 
ATTITUDE DETERMINATION INITIALIZATION ERRORS 

Quaternion Errors (q1,q2,q3) [0.008,0.012,-0.008] 
Angular Rate Errors [-0.001,0.001,0.002] rad/sec 

KALMAN FILTER INITIALIZATION 
State Estimate [0,0,0,0,0,0] 
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State Error Covariance Matrix 5e2*[100,0,0,0,0,0 
0,100,0,0,0,0 
0,0,100,0,0,0 
0,0,0,1,0,0,0 
0,0,0,0,1,0,0 
0,0,0,0,0,1,0 
0,0,0,0,0,0,1] 

STAR TRACKER ALIGNMENT TO BODY AXES 
Tracker 1 (x-rotation, y-rotation) 135 deg, 30 deg 
Tracker 2 (x-rotation, y-rotation) 135 deg, -30 deg 
Tracker 3 (x-rotation, y-rotation) 180 deg, 0 deg 

REACTION WHEEL PARAMETERS (4 WHEEL PYRAMID 
CONSTELLATION) 

Number of Wheels Operating 3 
Constellation Angle to xy-Plane 45 deg 
Constellation Torque Saturation Limit 1 Nm 
Constellation Torque Rate limits 10 Nm/sec 

Table 3. Simulation Input Parameters 
 
2. Command Attitude Profile 

The 500 second maneuvering profile chosen for the Bifocal Relay Mirror attitude 

simulation analysis is illustrated in Figures 35, 36 and 37.  This profile resembles the 

maneuver required to maintain transmit and receive telescope pointing control during an 

overhead operational pass to conduct laser relay operations.  The majority of the 

maneuver is performed in the spacecraft pitch axis, q2, as both telescopes orient to point 

at fixed ground sites.  Less significant motion is required in the spacecraft roll and yaw 

axes in order to ensure that the relative axis of rotation of the receive telescope is 

correctly oriented during the tracking maneuver.  Based on ground site separation 

distance and orbital altitude, the largest relative angle require between the telescopes is 

about 30 degrees during a near overhead pass between the uplink and downlink ground 

sites. 
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Figure 35. Baseline Commanded Attitude Profile 

 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
-4

-2

0

2

4

6

8

1 0

1 2
x  10

-3 Commanded Angular  Rates

Time (sec)

ra
d/

s

w 1
w 2
w 3w 2

w 1  

w 3

 
Figure 36. Baseline Commanded Angular Rate Profile 
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Figure 37. Baseline Commanded Relative Angle to Receive Telescope Profile 

 

The magnitude of the total spacecraft angular momentum during the maneuvering 

profile is plotted in Figure 38.  The spacecraft attitude is completely controlled by 

momentum exchange with the reaction wheels.  Therefore, the changes to the angular 

momentum profile are attributable the external disturbance moments.  The gravity 

gradient disturbance is modeled and the other disturbances are fixed so the angular 

momentum profile remains essentially common in all simulation runs. 
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Figure 38. Total Spacecraft Angular Momentum Profile 
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3. Attitude Determination System Performance Results 

In this baseline simulation, updates from randomly selected star trackers are 

provided to the dynamic gyro and the attitude propagator via the Kalman filter at two 

second intervals.  The star tracker H and V measurements are corrupted with noise 

variance of 1x10-4.  In order to observe the performance of the attitude determination 

system without updates, a 200 second star gap is simulated starting 100 seconds into the 

run.  As a worst-case analysis, this star gap occurs during the peak maneuvering time of 

the satellite including the rotation of the secondary body.  Attempt is made to tailor the 

plant and measurement error covariance matricies used in the Kalman filter.  The attitude 

determination system is initiated with the errors given in Table 3. 

The accuracy of the angular rate calculation is entirely dependent upon the ability 

of the dynamic gyro to track the total spacecraft angular momentum.  The error in the 

magnitude of the total system momentum compared to the simulated actual momentum is 

shown in Figure 39.  The steady state momentum error is held within 0.07 Nms with 

consistent star tracker data but builds to 0.35 Nms after 200 seconds without stars.  No 

external disturbance torques are modeled as dynamic gyro inputs in this simulation run. 
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Figure 39. Baseline Dynamic Gyro Angular Momentum Error 

 

After star tracker measurements are processed, the Kalman filter provides a 

momentum correction to the dynamic gyro determined from the spacecraft inertia and the 
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rate bias error state estimate.  The attitude quaternion is also updated and the states are 

reset to zero.  Figure 40 shows the magnitude of the error states determined by the 

Kalman filter.  No updates are provided during the 200 second star gap. 
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Figure 40. Baseline Kalman Filter Attitude and Rate Bias Errors 

 

Quaternion errors in the attitude determination system are plotted in Figure 41.  

Steady state attitude errors are maintained within 3x10-4 during periods of continuous star 

coverage but are increased an order of magnitude by the end of the 200 second star gap.  

After the star gap, the attitude error build up is quickly removed through measurement 

corrections. 
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Figure 41. Baseline Estimated Attitude Quaternion Error 

 

Figure 42 illustrates the nature of the angular rate estimation error produced by 

the dynamic gyro based determination system.  The error generated in the roll axis, w1, is 

the most significant because it is aligned with the axis of rotation of the secondary body.  

The relative rate is derived from imperfect potentiometer measurements.  The rate errors 

increase during receive telescope motion due to the potentiometer quatization effect 

which produces the broken pattern of noise.  The yaw axis is most coupled dynamically 

to roll axis and exhibits similar errors at less magnitude.  The build up of the bias in the 

rate error is hard to perceive among the noise but the effects are evident in the quaternion 

error plot. 
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Figure 42. Baseline Estimated Angular Rate Error 

 
4. Attitude Control System Performance Results 

Attitude control is accomplished by three reaction wheels selected from a pyramid 

constellation of four.  Nonlinear response of these control actuators is simulated by 

saturation and rate limiting the output torques as shown in Figure 11.  Wheel torque 

commands are generated by combining feed forward and error based control laws.  The 

control laws implementation is delayed at initiation to allow the attitude determination 

system to converge.  High gain control laws dominate the wheel torque response.  Figures 

43 and 44 show the torque and momentum response of the three operating reaction 

wheels. 
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Figure 43. Reaction Wheel Control Torques 
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Figure 44. Reaction Wheel Angular Momentum 

 

Attitude control performance is dominated by attitude determination errors.  The 

control system is designed to limit steady state errors in the attitude quaternions to less 

than 2x10-7 with ideal attitude and angular rate knowledge.  With the control laws 

applied, the attitude control response resembles the errors of the attitude determination 

system in steady state.  Figure 45 shows the attitude quaternion error response for the 

baseline simulation run.  Damped corrections back to steady state after the star gap are 

much slower than those realized by the attitude determination system. 
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Figure 45. Baseline Control Attitude Quaternion Error 

 

The error in the controlled spacecraft angular rate is shown in Figure 46.  Since 

most of the attitude determination noise is removed by the controller, the uncorrected rate 

error bias due to the star gap is evident.  Although the errors remain small during the star 

gap, the bias drives the attitude quaternion error build up. 
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Figure 46. Baseline Control Angular Rate Error 

 
B. DYNAMIC GYRO VS GYRO PERFORMANCE 

Results presented in this section compare a gyro based attitude determination 

system with the dynamic gyro based system.  Three orthogonally mounted gyroscopes 
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are modeled to provide simulated spacecraft body angular rate measurements to the 

attitude propagator when the gyro option is selected.  The gyro model includes static bias, 

rate noise, and rate random walk supplied by integration of random noise.  Gyroscope 

characteristics used for the simulation results are listed in Table 3.  A bias error tracking 

system is also modeled in parallel with the gyro generated rates to accept bias corrections 

provided by the Kalman filter.  Direct comparison of the dynamic gyro and gyro based 

attitude determination systems is accomplished using identical input parameters to obtain 

simulation results.  The SIMULINK subsystem for gyro rate measurement and bias error 

tracking is illustrated in Figure 47. 

 
Figure 47. SIMULINK Subsystem Diagram:  Gyro Measurement and Bias Error 

Tracker. 
 

1. Continuous Star Tracker Coverage 

With precise attitude updates from star trackers there is only little noticeable 

difference between the dynamic gyro and gyro based attitude determination systems.  

Figure 48 provides a side-by-side comparison of simulation results obtained with a 

continuous star update interval of 2 seconds. 
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Figure 48. Results: Dynamic Gyro vs. Gyro with Continuous Star Coverage 
 

Although the attitude quaternion errors show little difference between the two 

systems the rate errors from the gyros are noticeably more accurate and better resemble 

white noise.  Since the characteristics of the rate errors are different between the two 

systems the plant error covariance matricies used in the Kalman filter are chosen 

differently.  Table 4 shows the plant error covariance matricies used by the dynamic gyro 

and gyro based systems.  These values were determined through tuning over several 

simulation runs. 
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Plant Error Covariance Matrix (Q) 
Dynamic Gyro Gyro 

   

50 0 0 0 0 0

0 50 0 0 0 0

0 0 50 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5

 
 
 
 
 
 
 
 
  

       

3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 0.03 0 0

0 0 0 0 0.03 0

0 0 0 0 0 0.03

 
 
 
 
 
 
 
 
  

    

Table 4. Plant Error Covariance Matricies 
 

2. Gapped Star Tracker Coverage 

Figure 49 shows the comparison of the dynamic gyro and gyro based attitude 

determination systems when a 200 second gap in star tracker coverage is encountered 

during maneuvering operations.  Very little difference is evident in the rate error plots 

because the bias build up during the star gap is so small compared to the noise in the 

error.  The effect of the bias, however, shows in the attitude quaternion error plots.  At 

the end of the star gap the error in the dynamic gyro based system is about five times that 

of the gyro based system. 
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Figure 49. Results: Dynamic Gyro vs. Gyro with Gapped Star Coverage  
 
C. DYNAMIC GYRO PLANT ERROR ANALYSIS 

In this section the effects of major error sources on the performance of the 

dynamic gyro are analyzed.  Figure 50 shows the attitude determination plots for the 

baseline simulation run.  Dynamic gyro input parameters are varied and results are 

compared with these plots. 
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Figure 50. Baseline Attitude Determination Performance Results 
 

1. Disturbance Torque Modeling 

The accuracy of the dynamic gyro depends on knowledge of external disturbance 

moments and internal spacecraft momentum.  For the baseline simulation run no external 

disturbances were modeled in the dynamic gyro.  This leads to the relatively large drift in 

attitude quaternions when uncorrected during the star gaps.  If the spacecraft’s attitude 

with respect to the orbital reference frame can be determined the gravity gradient 

disturbance torque can be modeled.  For the Bifocal Relay Mirror satellite this 

disturbance has the greatest effect.  Figure 51 illustrates the increase in performance of 

the dynamic gyro based attitude determination system when the gravity gradient moment 

is modeled.  At the end of the star gap the attitude errors are comparable to the gyro 

based system.  The total system angular momentum error is much smaller during the star 

gap and improvement can even be seen during times of continuous star coverage. 
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Figure 51. Gravity Gradient Disturbance Modeled in the Dynamic Gyro 
 

2. Rotation Axis Alignment Error 

Alignment errors of momentum exchange control devices and slewing 

appendages have direct effects on the dynamic gyro momentum error.  Alignment errors 

of fixed reaction wheels are easily compensated for by calibration but control moment 

gyros have directionally variant momentum vectors with respect to the spacecraft body.  

The results plots shown in Figure 52 are produced when a periodic alignment error on the 

net momentum of the reaction wheels with a magnitude of approximately 0.5 degrees is 

added to the simulation.  A significant increase in attitude error is developed during the 

star gap.  The dynamic gyro does not track the system angular momentum as well even 

during continuous star coverage. 

Figure 52. Reaction Wheel Alignment Error Effects on the Dynamic Gyro 
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3. Potentiometer Quantization 

The patterns shown in angular rate error plots for the dynamic gyro do not appear 

as white noise during appendage motion because of quantization effects in the model of 

the potentiometer that measures the relative orientation.  The simulated quantization level 

is 0.01 degrees in the baseline simulation.  Since the effect alternates direction of error 

the attitude quaternion errors are not affected significantly.  Figure 53 shows simulation 

performance results when the quantization level is decreased an order of magnitude.  The 

angular rate error looks more like white noise and the bias build up during the star gap 

can be seen. 

Figure 53. Reduced Potentiometer Quantization Effect on Dynamic Gyro 
Performance 

 
4. Moment of Inertia Update Frequency 

The inertia matrix for spacecraft with relatively small or slowly moving 

appendages does not change quickly.  In these cases processing power may be saved by 

performing the system inertia calculation at a lower bandwidth than the dynamic gyro.  In 

the Bifocal Relay Mirror satellite the secondary body is large so even small slew rates 

cause significant change in the system inertia matrix.  Figure 54 shows the effects of 

decreasing the inertia calculation frequency from the 20 Hz rate of the dynamic gyro to 

once every 10 seconds.  The quaternion error profile is significantly altered but the 

magnitude of the error is only slightly increased.  The momentum error in the dynamic 

gyro takes longer to correct after the star gap since the Kalman filter attempts to correct 

for all errors as if they were due to spacecraft momentum. 
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Figure 54. 10 Hz Moment of Inertia Calculation 
 
D. STAR TRACKER MEASUREMENT ERROR ANALYSIS 

The dynamic gyro based attitude determination system is highly reliant on 

Kalman filter updates based on star tracker measurements.  The quality of the Kalman 

filter corrections depend on the accuracy of the trackers, the discrete measurement 

interval and number of trackers providing measurements. 

 
1. Star Tracker Accuracy 

The results shown in Figure 55 are from simulations using random selection at 2 

second intervals.  The plot on the left is generated using a 1 sigma variance of 1x10-4 in 

the horizontal and vertical measurements of the trackers.  To generate the plot on the 

right the variance is reduced by four times.  The direct effect on attitude determination 

performance is apparent. 
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Figure 55. Star Tracker 1 Sigma Variance:  1x10-4 [left] vs 2.5x10-5 [right] 
 

2. Update Interval 

Figure 56 shows a comparison of attitude determination performance using 2 and 

6 second star measurement intervals.  Shorter update intervals result in quicker 

convergence and less steady state error. 

Figure 56. Star Tracker Update Interval:  2 Seconds [left] vs 6 Seconds [right] 
 

3. Star Tracker Selection 

Because the star tracker measurements provide useful information along only two 

axes at least two trackers must be active to maintain pointing control.    Figure 57 shows 

the comparison of an attitude determination simulation with updates spread evenly 

between three trackers and one that uses two trackers with 95% of the updates coming 

from the same sensor.  There is no apparent degradation when the updates are spread 

evenly between the two operational trackers. 
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Figure 57. Star Tracker Selection Comparison:  Even Distribution [left] vs One 
Tracker Favored [right] 
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VIII. CONCLUSIONS 
Equation Section (Next) 
 
 

Dynamic modeling provides an imperfect but operative means of estimating 

multi-body spacecraft angular rates when mechanical gyro data are not available.  An 

attitude and angular rate estimation scheme is developed in this thesis that integrates the 

dynamic gyro concept with an error state extended Kalman filter estimator that provides 

precise attitude updates from star tracker measurements.  Results indicate that the 

determination system provides effective estimates for performing attitude control. 

 
A. SUMMARY 

The attitude determination system is incorporated into a multi-body spacecraft 

attitude simulation for evaluation and analysis.  Simulation is an extremely valuable 

analysis tool for understanding the effects of error sources on system performance.  It is 

also a suitable mechanism for comparison with gyro based determination systems since a 

mechanical gyro model can easily be inserted. 

The effects of the primary error sources on the dynamic gyro performance are 

investigated through simulation.  It is shown that the corrections provided by a star 

tracker based Kalman filter make the system robust to measurement and parameter 

knowledge error sources.  Significant improvement in attitude determination performance 

is realized when disturbance torques are modeled.  The other primary error sources 

include the alignment of momentum exchange control devices and relative angle and rate 

knowledge in large or quickly slewing appendages.  Error effects are amplified during 

star gaps when no corrections to the dynamic model are available. 

The software implemented dynamic gyro essentially emulates the functions of a 

set hardware gyroscopes.  In a spacecraft where the mechanical gyros have failed or 

become too erratic to be corrected by the Kalman filter the dynamic gyro may be a viable 

replacement.  Operated in tandem with mechanical gyros, either system can provide 

redundant inertial angular velocity for improved attitude control. 
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This attitude determination concept is ideally suited to a spacecraft designed 

specifically for its implementation with precise internal sensors and mechanisms to 

monitor spacecraft parameters and integrated external torque estimation modeling.  In 

these systems the dynamic gyro can increase the lifetime and reliability of the spacecraft 

while reducing the power requirements. 

 
B. RECOMMENDATIONS 

A strong recommendation for future work is simulation model tailoring to real 

spacecraft hardware.  The multi-body dynamics can be expanded to model an actual 

satellite’s mass and inertia characteristics.  Additionally, sensor parameters can be 

modeled to match existing sensor error specs.  With these modifications the simulation 

model can be used conduct analysis and predict performance when the dynamic gyro 

software is implemented on board the spacecraft.  Future work may include using the 

simulation to compare the predicted dynamic gyro based attitude determination 

performance to actual gyro based performance recorded with telemetry data. 

There are several improvements that can be made to the attitude determination 

simulation model.  It could easily be modified to provide the capability to mix gyroscope 

and dynamic gyro data for redundant information.  A parity matrix developed from the 

pseudo-inverse concept can be generated to account for system observability in the over 

determined case.  This would allow performance analysis with selected gyro failures and 

further aid in the evaluation of its utility as a back-up attitude determination scheme.  

Another simulation improvement would be the incorporation of higher order dynamic 

effects into the model including center of mass offsets and flexibility modes for the 

appendage couplings. 

Finally, improvements to the attitude determination scheme can be developed 

including a torque error estimator as suggested by The Aerospace Corporation [Ref. 8].  

The better the dynamics are modeled in the processing software the more effective the 

dynamic gyro becomes as a replacement for the hardware gyroscope. 
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APPENDIX A:  KALMAN FILTER BACKGROUND 
Equation Section  1 
 
 

“The Kalman filter combines all available measurement data, plus prior 

knowledge about the system and measuring devices, to produce an estimate of the desired 

variables in such a manner that the error is minimized statistically” [Ref. 2].  An 

understanding of the Kalman filter requires some background in the theory of probability 

of random variables and processes [Ref. 1]. 

 
A. PROBABILITY 

The probability of an event, e, represents a possible outcome of a random 

experiment and is written Pr(e).  A random variable, X, can be thought of as a function of 

the outcomes of some random experiment.  The manner of specifying the probability with 

which different values are taken by a random variable is the probability distribution 

function, F(x) 

F(x)=Pr(X x)≤         (A.1)  

This is a function over the range of possible values that shows the probability with which 

the random variable takes on a value at or less than the value of the range.   Its derivative 

is the probability density function, f(x),  

dF(x)
f(x)=

dx
         (A.2)  

This function identifies the likelihood of a random variable assuming a particular value in 

its range of possible values.  Over the range of all possible values a characteristic of any 

probability distribution or density function is 

-

F( )= f(u)du 1
∞

∞

∞ =∫         (A.3)  

A joint probability density function can be defined for multiple variables.  For two 

random variables the joint density is given by 

2
2

2

F (x,y)
f (x,y)

x y

∂
=

∂ ∂
        (A.4) 
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B. EXPECTATION 

The expectation of a random variable is defined as the sum of all values the 

random variable may take, each weighted by the probability with which the value is 

taken. 

-

E[X]= xf(x)dx
∞

∞
∫         (A.5)  

which is also called the mean value or first moment of X.   This is a precisely defined 

number toward which the average of a number of observations of the random variable X 

tends.  Since a function of a random variable is itself a random variable, the expectation 

of a function of X, E[g(X)], can be expressed as 

-

E[g(X)]= g(x)f(x)dx
∞

∞
∫        (A.6)  

An important statistical parameter descriptive of X is its mean squared value defined by 

2 2E[X ] x f(x)dx
∞

−∞

= ∫         (A.7)  

which is also called the second moment of X.  The root-mean-squared (rms) value of X is 

2E[X ] .  The variance of a random variable is defined as the mean squared deviation of 

the variable from its mean denoted by 2ó . 

2 2 2 2

-

ó (x-E[X]) f(x)dx E[X ]-E[X]
∞

∞

= =∫      (A.8)  

For zero mean random variables the variance is simply 2E[X ] .  The square root of the 

variance, ó , is called the standard deviation of the random variable. 

A very important concept is that of statistical correlation between random 

variables.  A partial indication of the degree to which one variable is related to another is 

given by the cross covariance, which is the expectation of the product of the deviations of 

the two variables from their means, 
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2

- -

E[(X-E[X])(Y-E[Y])]= (x-E[X])(y-E[Y])f (x,y)dydx=E[XY]-E[X]E[Y]
∞ ∞

∞ ∞
∫ ∫  

           (A.9) 

For a vector of random variables a symmetric covariance matrix can be defined 

where the diagonal elements are the individual variances of the vector components and 

the off diagonals are given by the cross covariances between the corresponding vector 

components.  The cross covariance, normalized by the standard deviations of X and Y, is 

called the correlation coefficient. 

X Y

E[XY]-E[X]E[Y]
ñ=

ó ó
        (A.10)  

This is a measure of the degree of linear dependence between variables X and Y.  If they 

are completely independent ñ  is zero. 

 
C. LEAST-SQUARES ESTIMATION CONCEPT 

The optimality condition used in the Kalman filter is the minimization of 

weighted least-squares error.  The least-squares minimization problem involves a set of 

measurements, y
v

, which are linearly related to the vector of state variables, x
v

, by the 

expression 

y=Hx+v
v v v

         (A.11)  

where v
v

 is an unknown vector of actual measurement errors with zero mean.  The error 

we seek to minimize is the measurement residual, z
v

, given by 

ˆz=y-Hx
v v v

         (A.12)  

where x̂
v

 is the estimate of the actual state vector.  Since the sum of the squares of a 

vector are generated by the inner product, the cost function, J, is 

( ) ( )Tˆ ˆJ= y-Hx y-Hxv v v v         (A.13)  

Minimization is obtained by differentiating and setting the result to zero 
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J
=0

x̂

∂
∂

v
v           (A.14)  

and ensuring that the Hessian is positive semidefinite 

2

2

J
0

x̂

∂
≥

∂
v          (A.15)  

The resulting least-squares solution for the state estimate is 

( ) 1T Tx̂= H H H y
−v v

        (A.16)  

A weighted least-squares solution can be used when not all components of the 

measurement residual are treated equally 

( ) 1T Tx̂= H WH H Wy
−v v

        (A.17)  

where W is a positive semidefinite matrix relating scale factors between components.  

Expanding this solution to multiple estimates over time assumes all measurements are 

used together in a batch processing scheme.  Every time a new measurement becomes 

available it is appended to the measurement vector and the estimated state vector includes 

estimates corresponding to each of the accumulated measurements.  The Kalman filter is 

based on recursive processing where each measurement is used sequentially to generate 

an optimal estimate of the current state without recomputing estimates of all previous 

states.  For this technique all previous information is embodied in the prior estimate and 

state covariance matrix. 

 
D. STATE ESTIMATE AND COVARIANCE 

The Kalman filter estimation algorithm maintains the first two statistical moments 

of the estimated state.  The estimated state, x̂
v

, is a vector of random variables whose 

mean (first moment) is the actual state vector, x
v

.  The error in the state estimate is 

defined as 

ˆx x x−v v v% @          (A.18)  

and is thus assumed to be zero mean.  The covariance of the state estimate error, 

designated P, is given by 
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TP=E[xx ]
vv% %          (A.19)  

This covariance matrix associated with the state estimate error (second moment) provides 

a statistical measure of the uncertainty in x̂
v

 and the correlation between the errors of its 

components.  For a state vector of two variables the state estimate error is given by 

1

2

x
x=

x

 
 
 

%v%
%

         (A.20)  

and has the covariance matrix 

2 2
1 1 2 1 1 2

2 2
1 2 2 1 2 2

x x x E[x ] E[x x ]
P=E

x x x E[x x ] E[x ]

      =    
     

% % % % % %

% % % % % %
     (A.21) 

The diagonal elements of the state covariance matrix are the mean square errors in 

the knowledge of the state variables while the off diagonal elements are indicators of 

cross correlation between elements of the estimated error. 

 
E. STOCHASTIC LINEAR DYNAMIC MODEL 

The Kalman filter requires representation of system dynamics in a linearized 

state-space form, a linear measurement model, and assumed characteristics of process 

and measurement noise.  For a continuous linear system the general state-space model 

and measurement equations are given by 

x(t)=F(t)x+G(t)w(t)

y(t)=H(t)x(t)+v(t)

v v v&
v v         (A.22)  

where w(t)
v

 and v(t)
v

 are random vectors representing the unmodeled disturbance inputs 

and measurement errors.  These vectors are treated as unbiased (zero mean) white noise.  

Note that if one of these vectors is known to have a nonzero bias the mean can be 

augmented onto the state vector creating a new state space model with unbiased random 

error.  The covariance matricies associated with the process disturbance, w(t)
v

, and the 

measurement noise, v(t)
v

, are 
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T

T

Q E[v(t)v(t) ]

R E[w(t)w(t) ]

=

=

v v

v v         (A.23)  

The equivalent discrete representation is 

k+1 k k k k

k k k k

xö x +Ã w

y =H x +v

=
v v v

v v v         (A.24)  

Here the subscript k represents values at time tk and subscript k+1 represents values at the 

next discrete time step tk+1.  Note that for time invariant systems the discrete state 

transition matrix, kö , is related to the continuous formulation by 

k+1 kF(t -t )
kö =e          (A.25)  

which depends only on the systems dynamics matrix, F, and the discrete time interval.  If 

the discrete interval is kept short enough the relation holds as an approximation.  The 

state transition matrix allows the calculation of state vector at the next discrete time step 

in the absence of forcing functions.  It obeys the differential equation 

k
k

dö
F(t)ö

dt
=          (A.26) 

 
F. PROPAGATION OF ERRORS 

The recursive Kalman filter requires the propagation estimate and error 

covariance based on system dynamics.  In the discrete implementation the error in the 

current estimate given by 

k k k
ˆx x - x=v v v%          (A.27)  

has the covariance matrix representing the uncertainty in the estimate  

T
k k kP E[x x ]= v v% %          (A.28)  

The best estimate of the future state, k+1x̂
v

, is given by 

k+1 k k
ˆ ˆx = ö x
v v

         (A.29)  

The error in the new estimate 

1 k k k kö x Ã wkx + = −v v v% %         (A.30)  

has the expected value 
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k+1 k k k kE[x ] ö E[x ] Ã E[w ] 0= − =
vv v v% %       (A.31)  

since kx
v%  and kw

v
are assumed to be unbiased.  Thus the predicted estimate remains 

unbiased.  Note that if a deterministic input is added to the dynamic system model then 

the identical quantity is added to both the actual and estimated state leaving the 

estimation error unchanged.  It can be shown that the associated state error covariance 

matrix is given by 

T T T
k+1 k+1 k+1 k k k k k kP E[x x ] ö P ö Ã Q Ã= = +

v v% %       (A.32)  

where Qk is the covariance of the random system disturbance.  It is evident from this 

equation that the size of disturbance directly impacts the uncertainty in the state estimate.  

The system dynamic stability reflected in the state transition matrix also effects the 

uncertainty.  The covariance of neutrally stable or unstable systems will grow unbounded 

over time in the absence of measurement corrections.  The propagation of the state 

estimate and its error covariance matrix is the prediction step of the Kalman filter 

algorithm. 

 
G. MEASUREMENT UPDATES 

The correction step of the Kalman filter algorithm incorporates measurement 

updates to refine the state estimate and error covariance.  This step is executed only when 

a measurement becomes available.  When a measurement is taken we use the superscripts 

‘-‘ and ‘+’ to denote values at a particular time before and after incorporation of the 

measurement correction.  Given a prior estimate of the system state at time tk we seek to 

update our estimate based on the measurement ky
v

 in a linear, recursive form 

+ ' -
k k k k k

ˆ ˆx K x K y= +v v v
        (A.33)  

where '
kK  and kK  are matricies, as yet unspecified, that determine the relative weighting 

of the prior estimate and current measurement.  The error in this estimate can be shown to 

be 

( )+ ' ' -
k k k k k k k k kx K K H I x K x K v= + − + +v v v v% %      (A.34)  

Since -
kx

v%  and kv
v

 are unbiased 
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-
k

k

E[x ]=0

E[v ] 0=

vv%
vv          (A.35)  

this estimate can only remain unbiased for all given states if 

'
k k kK I K H= −         (A.36)  

With this requirement the estimator takes the form 

( )+ - -
k k k k k k

ˆ ˆ ˆx x K y H x= + −
v v v v

       (A.37)  

and has corresponding error 

( )+ -
k k k k k kx I K H x K v= − +v v v% %        (A.38) 

The state error covariance must also be updated. 

+ + +T
k k k

- -T T T T -T T T
k k k k k k k k k k k k k k k

P E[x x ]

E{(I K H )x [x (I K H ) v K ] K v [x (I K H ) v K ]}

=

= − − + + − +

v v% %

v v v v v v% % %
 

           (A.39)  

Using the definitions 

- - -T
k k kP E[x x ]= v v% %          (A.40)  

and 

T
k k kR E[v v ]= v v

         (A.41)  

and noting that the measurement errors are uncorrelated 

- T -T
k k k kE[x v ] E[v x ] 0= =v v v v% %        (A.42)  

The covariance can be simplified to 

+ - T T
k k k k k k k k kP (I K H )P (I K H ) K R K= − − +      (A.43) 

The criterion for choosing the optimal Kk is to minimize a weighted scalar sum of 

the diagonal elements of the error covariance matrix, +
kP .  Thus the cost function is 

+T +
k k kJ E[x Sx ]= v v% %         (A.44)  

where S is any positive semidefinite matrix.  Choosing S = I, 
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+
k kJ trace[P ]=          (A.45)  

which is equivalent to minimizing the length of the estimation error vector.  To find the 

value of Kk which yields a minimum, it is necessary to take the derivative of Jk with 

respect to Kk and set it equal to zero.  The result is 

- T
k k k k k k2(I K H )P H 2K R 0− − + =       (A.46)  

Solving for Kk, 

- T - T 1
k k k k k kK P H [H P H ]−=        (A.47)  

which is referred to as the Kalman gain matrix.  Since the Hessian of Jk is positive 

semidefinite so Kk does indeed produce a minimum.  Substituting into the equation for 

the updated error covariance gives 

( )+ - - T - T 1 - -
k k k k k k k k k k k k kP P P H [H P H R ] H P I K H P−= − + = −    (A.48) 
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APPENDIX B:  MATLAB CODE 
 
 
 

A. INPUT PARAMETERS AND SIMULATION CALL 

 
%Bifocal Relay Mirror Spacecraft Attitude Control System 
%Input parameters and control options for attitude simulation model 
 
clear 
tic 
 
stoptime=500; %Simulation stoptime 
dt=.05; %fixed step size and computer time step 
 
m1=2267.6059; %Mass of X-mit telescope (kg) 
m2=972.3628; %Mass of RCV telescope (kg) 
 
%Orbital parameters (circular) 
Re=6378.1363; %Earth radius (km) 
mu=3.986004415e5; %gravitational constant (km^3/s^2) 
h=715; %orbit altitude (km) 
r=Re+h; %orbit radius (km) 
we=7.2921158533e-5; %Earth rotation rate (r/s) 
w0=sqrt(mu/r^3); %orbital rate based on circular orbit/altitude (r/s) 
nu0=0; %initial true anomaly (r) 
u0=0; %initial angle of the magnetic dipole normal to the 
    %line of ascending nodes (r) 
e1=11*pi/180; %magnetic dipole tilt angle 
inc=40*pi/180; %inclination 
Km=7.943e15; %magnetic constant (Nm^2/a) 
Bm=Km/(r*1000)^3; %magnetic field strength (N/am) 
 
%Disturbance torques 
Mds=1e-4*[1;1;1]; %secular disturbance torques (Nm) 
Mdp=4e-4*[1,1,1]; %periodic disturbances torque magnitudes (Nm) 
pdper=[400,500,600]; %periodic disturbance torque periods (s) 
pdfreq=2*pi./pdper; %periodic disturbance torque frequencies (r/s) 
pdphase=[pi/4,pi/2,pi]; %periodic disturbance torque phase (r) 
 
%Magnetic dumping control 
magoo=0; %magnetic dumping on/off control (0=off, 1=on) 
magsat=180; %maximum torque rod output 
magk=5e5; %magnetic torquer gain 
 
%Appendage (RCV scope) motion relative to body x-axis (sinusoidal) 
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bper=300; %period of oscillation (s) 
bstart=.25*bper; %start motion (s) 
bmotion=1*bper; %length of motion (s) 
bstop=bstart+bmotion; %stop motion (s) 
bfreq=2*pi/bper; %frequency of motion (rad/s) 
bamp=15*pi/180; %amplitude/half maximum angular offset (rad) 
bi=0; %initial angular offset (rad) 
bdi=0; %initial relative angular rate (rad/s) 
bacc=bamp*bfreq^2; %maximum realtive angular acceleration (rad/s^2) 
bnv=1e-5^2; %relative angular noise variance from potentiometer (rad) 
bns=0; %initial seed of potentiometer noise 
bq=.01*pi/180; %quantization of potentiometer readings (rad) 
 
%Command profile inertial to body accelerations (sinusoidal) 
wdcfreq=2*pi*[1/800;1/500;1/600]; %frequency of acceleration profile variation 
wdc=[.05*wdcfreq(1)^2;.5*wdcfreq(2)^2;-.1*wdcfreq(3)^2]; 
    %amplitude of acceleration profile 
wdcphase=[pi/8;-pi/12;0]; %phase of acceleration profile 
cpoo=1; %turn commanded profile on/off (0=off, 1=on) 
 
I1=[2997.28025,-3.9331,118.2824; 
    -3.9331,3164.18285,1.1230; 
    118.2824,1.1230,881.82105]; 
    %moment of inertia matrix of primary body (XMIT scope) about its cm 
I2=[1721.07340,-.0116,-7.8530; 
    -.0116,1559.85414,-12.5463; 
    -7.8530,-12.5463,182.89962]; 
    %moment of inertia matrix of appendage (RCV scope) about its cm 
 
dx1=.558354158; %Distance of X-mit telescope cm from S/C cm in x dir (m) 
dy1=3.91788e-4; %Distance of X-mit telescope cm from S/C cm in y dir (m) 
dz1=-.15226902; %Distance of X-mit telescope cm from S/C cm in z dir (m) 
dx2=-1.302113918; %Distance of RCV telescope cm from S/C cm in x dir (m) 
dy2=-9.13673e-4; %Distance of RCV telescope cm from S/C cm in y dir (m) 
dz2=.355100092; %Distance of RCV telescope cm from S/C cm in z dir (m) 
 
IC1=I1+m1*[dy1^2+dz1^2,dx1*dy1,dx1*dz1; 
            dx1*dy1,dx1^2+dz1^2,dy1*dz1; 
            dx1*dz1,dy1*dz1,dx1^2+dy1^2]; 
    %moment of inertia matrix of primary body (XMIT scope) about S/C cm 
roti=[1,0,0;0,cos(bi),sin(bi);0,-sin(bi),cos(bi)]; 
    %rotation matrix corresponding to initial relative angular position 
    %of appendage (RCV scope) 
    %x-axis rotation of magnitude bi 
Ic2i=roti'*I2*roti; %initial rotated moment of inertia matrix of appendage 
    %(RCV scope) 
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I2m=m2*[dy2^2+dz2^2,dx2*dy2,dx2*dz2; 
        dx2*dy2,dx2^2+dz2^2,dy2*dz2; 
        dx2*dz2,dy2*dz2,dx2^2+dy2^2]; 
    %moment of inertia of appendage (RCV scope) about S/C C.M. 
    %due to mass offset 
IC2i=roti'*I2*roti+I2m; %initial moment of inertia matrix of appendage 
    %(RCV scope) about S/C cm 
Ii=IC1+IC2i; %initial S/C moment of inertia about S/C cm 
 
%Wheel control law gains 
%u=-Kqqe-Kwwe=-Kq(qc*q)-Kw(w-wc) 
cldel=30; %delay control laws for attitude determination 
Kq1=3000; 
Kq2=7000; 
Kq3=4500; 
Kw1=1000; 
Kw2=2000; 
Kw3=1000; 
 
%Initial body with respect to inertial quaternions 
q1i=0;q2i=0;q3i=0; 
qi=[q1i,q2i,q3i,sqrt(1-q1i^2-q2i^2-q3i^2)]; 
 
%Initial body with respect to orbit quaternions 
q1oi=0;q2oi=0;q3oi=0; 
qoi=[q1oi,q2oi,q3oi,sqrt(1-q1oi^2-q2oi^2-q3oi^2)]; 
 
%Initial body with respect to inertial direction cosine matrix 
dcmi(1,1)=qi(1)^2-qi(2)^2-qi(3)^2+qi(4)^2; 
dcmi(1,2)=2*(qi(1)*qi(2)+qi(3)*qi(4)); 
dcmi(1,3)=2*(qi(1)*qi(3)-qi(2)*qi(4)); 
dcmi(2,1)=2*(qi(1)*qi(2)-qi(3)*qi(4)); 
dcmi(2,2)=-qi(1)^2+qi(2)^2-qi(3)^2+qi(4)^2; 
dcmi(2,3)=2*(qi(2)*qi(3)+qi(1)*qi(4)); 
dcmi(3,1)=2*(qi(1)*qi(3)+qi(2)*qi(4)); 
dcmi(3,2)=2*(qi(2)*qi(3)-qi(1)*qi(4)); 
dcmi(3,3)=-qi(1)^2-qi(2)^2+qi(3)^2+qi(4)^2; 
Ci=[dcmi(1,1);dcmi(1,2);dcmi(1,3); 
    dcmi(2,1);dcmi(2,2);dcmi(2,3); 
    dcmi(3,1);dcmi(3,2);dcmi(3,3)]; 
    %Direction cosine component vector 
Ai=[dcmi(1,1),dcmi(1,2),dcmi(1,3); 
    dcmi(2,1),dcmi(2,2),dcmi(2,3); 
    dcmi(3,1),dcmi(3,2),dcmi(3,3)]; 
    %Direction cosine/attitude matrix 
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%Initialize S/C momentum with wi at orbital rate 
wi=[0;-w0;0]; %Initial angular rate of S/C primary body due to orbital rate 
Hi=Ii*wi; %initial angular momentum of S/C due to orbital rate 
 
%Gyro characteristics 
grsb=1e-4*[-1,1.5,1]; %arbitrary gyro static bias 
grv=1e-9*[1,1,1]; %variance of gyro rate noise 
grn=[0,1,2]; %initial seed of gyro rate noise 
gasb=[0,0,0]; %gyro acceleration static bias (zeros) 
gav=1e-12*[1,1,1]; %variance of gyro acceleration noise 
gan=[3,4,5]; %initial seed of gyro acceleration noise 
grrwi=[0,0,0]; %initial rate random walk (zeros) 
wbi=[0;0;0]; %initial gyro bias correction 
gx=0*pi/180; %body to gyro(IRU) x-axis rotation 
gy=0*pi/180; %body to gyro(IRU) y-axis rotation 
G=[cos(gy),sin(gy)*sin(gx),-sin(gy)*cos(gx); 
    0,cos(gx),sin(gx); 
    sin(gy),-cos(gy)*sin(gx),cos(gy)*cos(gx)]; 
    %Gyro alignment matrix - body to IRU 
 
%Dynamic Gyro input options 
dg=1; %choose Dynamic Gyro or regular gyros (1=DG, 0=gyros) 
dggg=0; %calculate gravity gradient torque for DG (1=yes(requires or=1), 0=no) 
dgsd=0; %secular disturbance torque known for DG (1=yes, 0=no) 
dgpd=0; %periodic disturbance torque known for DG (1=yes, 0=no) 
moiu=1; %steps per periodic moment of inertia calculation (1=every step) 
or=0; %perform orbital reference calculations 
 
%Attitude determination initialization with error 
qe1i=q1i+.008;qe2i=q2i+.012;qe3i=q3i-.008; 
qei=[qe1i,qe2i,qe3i,sqrt(1-qe1i^2-qe2i^2-qe3i^2)]; 
dcmei(1,1)=qei(1)^2-qei(2)^2-qei(3)^2+qei(4)^2; 
dcmei(1,2)=2*(qei(1)*qei(2)+qei(3)*qei(4)); 
dcmei(1,3)=2*(qei(1)*qei(3)-qei(2)*qei(4)); 
dcmei(2,1)=2*(qei(1)*qei(2)-qei(3)*qei(4)); 
dcmei(2,2)=-qei(1)^2+qei(2)^2-qei(3)^2+qei(4)^2; 
dcmei(2,3)=2*(qei(2)*qei(3)+qei(1)*qei(4)); 
dcmei(3,1)=2*(qei(1)*qei(3)+qei(2)*qei(4)); 
dcmei(3,2)=2*(qei(2)*qei(3)-qei(1)*qei(4)); 
dcmei(3,3)=-qei(1)^2-qei(2)^2+qei(3)^2+qei(4)^2; 
Cei=[dcmei(1,1);dcmei(1,2); 
    dcmei(1,3);dcmei(2,1);dcmei(2,2);dcmei(2,3); 
    dcmei(3,1);dcmei(3,2);dcmei(3,3)]; 
Aei=[dcmei(1,1),dcmei(1,2),dcmei(1,3); 
    dcmei(2,1),dcmei(2,2),dcmei(2,3); 
    dcmei(3,1),dcmei(3,2),dcmei(3,3)]; 
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qe1oi=q1oi+.02;qe2oi=q2oi+.03;qe3oi=q3oi-.02; 
qeoi=[qe1oi,qe2oi,qe3oi,sqrt(1-qe1oi^2-qe2oi^2-qe3oi^2)]; 
wei=wi+1e-3*[-1;1;2]; 
Hei=Ii*wei; 
 
%Initialize Kalman filter 
xi=0*[ones(3,1)*eps*1e10;ones(3,1)*eps*1e8]; %initial state vector 
Pi=[100*eye(3),zeros(3);zeros(3),eye(3)]*500; %initial covariance matrix 
if dg==1 
    Qn=.5; 
else            %plant noise covariance constant DG vs gyro 
    Qn=.03; 
end 
Q=[100*eye(3),zeros(3);zeros(3),eye(3)]*Qn; %plant noise covariance 
    %small Q = good plant, biq Q = bad plant 
R=10000*eye(2); %measurement noise covariance (10000) 
E=[1,0,0;0,1,0]; %choose horizontal and vertical components only 
 
%Star tracker parameters 
corr=2*1/dt; %computer steps between stars 
gapstart=100; %start gap in star tracker data (s) 
stargap=200; %length of star gap (s) 
gapstop=gapstart+stargap; %end gap in star tracker data (s) 
t1x=135*pi/180; %body to star tracker one x-axis rotation 
t1y=30*pi/180; %body to star tracker one y-axis rotation 
T1=[cos(t1y),sin(t1y)*sin(t1x),-sin(t1y)*cos(t1x); 
    0,cos(t1x),sin(t1x); 
    sin(t1y),-cos(t1y)*sin(t1x),cos(t1y)*cos(t1x)]; 
    %body to star tracker one rotation matrix 
t2x=135*pi/180; %body to star tracker two x-axis rotation 
t2y=-30*pi/180; %body to star tracker two y-axis rotation 
T2=[cos(t2y),sin(t2y)*sin(t2x),-sin(t2y)*cos(t2x); 
    0,cos(t2x),sin(t2x); 
    sin(t2y),-cos(t2y)*sin(t2x),cos(t2y)*cos(t2x)]; 
    %body to star tracker two rotation matrix 
t3x=180*pi/180; %body to star tracker two x-axis rotation 
t3y=0*pi/180; %body to star tracker two y-axis rotation 
T3=[cos(t3y),sin(t3y)*sin(t3x),-sin(t3y)*cos(t3x); 
    0,cos(t3x),sin(t3x); 
    sin(t3y),-cos(t3y)*sin(t3x),cos(t3y)*cos(t3x)]; 
    %body to star tracker two rotation matrix 
mixT3=1; %choose whether or not to mix in star tracker 3 data (1=yes, 0=no) 
T3th=.3; %choose threshold for random mix of star tracker 3 data 
    %(0=50%, higher=less, lower=more) 
T12b=0; %choose to bias random selection between tracker 1 and 2 
    %(0=50/50, lower=favor1, higher=favor2) 
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stnb=[0,0]; %unknown star tracker bias error 
stnv=1e-4^2*[1,1]; %variance of star tracker noise 
stns=[0,1]; %initial seed of star tracker noise 
 
%3 of 4 reaction wheels in pyramid constellation 
rwsat=1*[1,1,1]; %constellation wheel torque saturation limits (Nm) 
rwrl=10*[1,1,1]; %constellation wheel torque rate limiter (Nm/s) 
hwi=-I2*[bdi;0;0]; %initialize wheels to cancel appendage momentum 
rwa=45*pi/180; %angle of reaction wheels to x-y plane 
RW=inv([-cos(rwa)*cos(pi/4),-cos(rwa)*cos(pi/4),cos(rwa)*cos(pi/4); 
 -cos(rwa)*cos(pi/4),cos(rwa)*cos(pi/4),cos(rwa)*cos(pi/4); 
 -sin(rwa),-sin(rwa),-sin(rwa)]); %body to wheel transform matrix 
hwsi=RW*hwi; %distribute initial wheel momentum 
rwnm=[0;0;0]; %mean of wheel noise 
rwnv=1e-2^2*[1;1;1]; %variance of wheel noise 
rwns=[7;8;9]; %initial seed of wheel noise 
rwev=1e-8*[1,1,1]; %variance of wheel alignment walk error noise 
rwes=[10,11,12]; %initial seed of gyro acceleration noise 
rwam=1*5e-3*[1,2,-1]; %reaction wheel constellation alignment error magnitudes 
rwaf=2*pi*[100,50,20]; %reaction wheel constellation alignment error frequencies 
rwap=[pi/4,pi/3,pi/2]; %reaction wheel constellation alignment error phase 
 
sim('acs_sim509') %Call to SIMULINK simulation 
 
%Call ploting files for simulation results analysis 
profileplots %command profile 
ADplots509 %attitude determination performance 
ACplots509 %attitude control performance 
 
toc 

 

B. SIMULATION RESULTS PLOTS 

 
1. Commanded Profile Plots 

 
%Laser Realy Spacecraft command profile plots 
 
figure(1) 
clf 
plot(tout,qc) 
title('Commanded Quaternions') 
legend('q1','q2','q3','q4') 
xlabel('Time (sec)') 
grid on 
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figure(2) 
clf 
plot(tout,wc) 
title('Commanded Angular Rates') 
legend('w1','w2','w3') 
xlabel('Time (sec)') 
ylabel('rad/s') 
grid on 
figure(3) 
clf 
plot(tout,b*180/pi) 
xlabel('Time (sec)') 
ylabel('Deg') 
title('Relative Angle to Recieve Telescope (alpha)') 
grid on 
figure(4) 
clf 
Hm=sqrt(H(:,1).^2+H(:,2).^2+H(:,3).^2); 
plot(tout,Hm) 
title('System Angular Momentum') 
xlabel('Time (sec)') 
ylabel('Nms') 
grid on 
 

2. Attitude Determination Performance Results 

 
%Bifocal Realy Mirror satellite attitude determination plots 
%analyze performance of dynamic gyro and Kalman filter 
 
%DG momentum error or gyro bias 
if dg==1 
figure(5) 
clf 
Hm=sqrt(H(:,1).^2+H(:,2).^2+H(:,3).^2); 
Hmdg=sqrt(Hdg(:,1).^2+Hdg(:,2).^2+Hdg(:,3).^2); 
plot(tout,Hm-Hmdg) 
title('Angular Momentum Error') 
xlabel('Time (sec)') 
ylabel('Nms') 
axis([0,stoptime,-.4,.4]) 
grid on 
else 
figure(5) 
clf 
plot(tout,wb) 
title('Gyro Biases') 
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legend('wb1','wb2','wb3') 
xlabel('Time (sec)') 
ylabel('rad/s') 
grid on 
end 
 
%KF states 
figure(6) 
clf 
subplot(211),plot(tout,x(:,1:3)) 
title('State Attitude Errors') 
legend('xa1','xa2','xa3') 
xlabel('Time (sec)') 
ylabel('rad') 
axis([0,stoptime,-.0008,.0008]) 
grid on 
subplot(212),plot(tout,x(:,4:6)) 
title('State Rate "Bias" Errors') 
legend('xb1','xb2','xb3') 
xlabel('Time (sec)') 
ylabel('rad/s') 
axis([0,stoptime,-.00008,.00008]) 
grid on 
 
%AD errors 
figure(7) 
clf 
plot(tout,(q-qkf)) 
title('Quaternion Errors') 
legend('q1','q2','q3','q4') 
xlabel('Time (sec)') 
axis([0,stoptime,-3e-3,3e-3]) 
grid on 
figure(8) 
clf 
plot(tout,w-wkf) 
title('Rate Errors') 
legend('w1','w2','w3') 
xlabel('Time (sec)') 
ylabel('rad/s') 
axis([0,stoptime,-1.5e-3,1.5e-3]) 
grid on 
 

3. Attitude Control Performance Results 

 
%Bifocal Realy Mirror satellite attitude control plots 
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%analyze commanded versus controled attitude 
 
figure(9) 
clf 
plot(tout,Mws) 
title('Wheel Torques') 
xlabel('Time (sec)') 
ylabel('Nm') 
legend('Wheel 1','Wheel 2','Wheel 3') 
grid on 
figure(10) 
clf 
plot(tout,hws) 
title('Wheel Angular Momentums') 
xlabel('Time (sec)') 
ylabel('Nms') 
legend('Wheel 1','Wheel 2','Wheel 3') 
grid on 
figure(11) 
clf 
plot(tout,(q-qc)) 
title('Quaternion Error') 
legend('q1','q2','q3','q4') 
xlabel('Time (sec)') 
axis([0,stoptime,-4e-3,4e-3]) 
grid on 
figure(12) 
clf 
plot(tout,w-wc) 
title('Rate Error') 
legend('w1','w2','w3') 
xlabel('Time (sec)') 
ylabel('rad/s') 
axis([0,stoptime,-1.5e-3,1.5e-3]) 
grid on 
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